Link to Google Scholar page.


  • A Sharp Theory of Hardy Spaces on Ahlfors-Regular Quasi-Metric Spaces. With M.Mitrea, Springer Lecture Notes in Mathematics, Vol.2142, (2015), 486 pages. Introduction Springerlink


  • Optimal Embeddings for Triebel-Lizorkin and Besov Spaces on Quasi-Metric Measure Spaces. With D.Yang and W.Yuan. (submitted) arXiv
  • A simple proof of reflexivity and separability of N^{1,p} Sobolev spaces. With P.Hajłasz and Lukáš Malý. Ann. Fenn. Math. 48 (2023), no. 1, 255-275. arXiv
  • Pointwise Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type. With F.Wang, D.Yang and W.Yuan. Studia Math. 268 (2023), no. 2, 121–166. PDF
  • A Measure Characterization of Embedding and Extension Domains for Sobolev, Triebel-Lizorkin, and Besov Spaces on Spaces of Homogeneous Type. With D.Yang and W.Yuan. J. Funct. Anal. 283 (2022), no. 12, Paper No. 109687, 71 pp. arXiv
  • The game of cycles. With M.Averett, B.Gaines, C.Jackson, M.L.Karker, M.A.Marciniak, F.E.Su, and S.Walker. Amer. Math. Monthly 128 (2021), no. 10, 868-887. arXiv
  • Sobolev embedding for M^{1,p} spaces is equivalent to a lower bound of the measure. With P.Górka and P.Hajłasz. J. Funct. Anal. 279 (2020), no. 7, 108628 arXiv
  • A note on metric-measure spaces supporting Poincaré inequalities. With P.Hajłasz. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2020), no.1, 15-23. arXiv
  • Characterizing Lusin's Theorem and the Density of Continuous Functions in Lebesgue Spaces via the Regularity of the Measure. With M.Mitrea and B.Schmutzler. (preprint)
  • Whitney-type extensions with control of the modulus of continuity in geometrically doubling quasi-metric spaces. With I.Mitrea and M.Mitrea. Commun. Pure Appl. Anal., 12 (2013), No. 1, pp. 59-88. PDF
  • Sharp geometric maximum principles for semi-elliptic operators with singular drift. With D.Brigham, V.Maz'ya, M.Mitrea and E.Ziadé, Math. Res. Lett., Vol.18 (2011), No. 04, pp. 613-620. PDF
  • On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-Oleinik Boundary Point Principle. With D.Brigham, V.Maz'ya, M.Mitrea and E.Ziadé, Journal of Mathematical Sciences, Vol. 176 (2011), No. 3, pp. 281-360.
  • Topics in Harmonic Analysis and Partial Differential Equations: Extension Theorems and Geometric Maximum Principles. Masters Thesis. (2011). PDF