*A Sharp Theory of Hardy Spaces on Ahlfors-Regular Quasi-Metric Spaces.*With M.Mitrea, Springer Lecture Notes in Mathematics, Vol.2142, (2015), 486 pages. Introduction Springerlink

*Borel regularity is equivalent to Lusin's theorem and the existence of Borel representatives.*With P.Górka and A.Słabuszewski. (submitted) arXiv*Compact embeddings of Sobolev, Besov, and Triebel-Lizorkin spaces.*With P.Górka and A.Słabuszewski. (submitted) arXiv*Optimal Embeddings for Triebel-Lizorkin and Besov Spaces on Quasi-Metric Measure Spaces.*With D.Yang and W.Yuan, Math. Z. 307, 50 (2024). arXiv*A simple proof of reflexivity and separability of N^{1,p} Sobolev spaces.*With P.Hajłasz and Lukáš Malý. Ann. Fenn. Math. 48 (2023), no. 1, 255-275. arXiv*Pointwise Characterization of Besov and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type.*With F.Wang, D.Yang and W.Yuan. Studia Math. 268 (2023), no. 2, 121–166. PDF*A Measure Characterization of Embedding and Extension Domains for Sobolev, Triebel-Lizorkin, and Besov Spaces on Spaces of Homogeneous Type.*With D.Yang and W.Yuan. J. Funct. Anal. 283 (2022), no. 12, Paper No. 109687, 71 pp. arXiv*The game of cycles.*With M.Averett, B.Gaines, C.Jackson, M.L.Karker, M.A.Marciniak, F.E.Su, and S.Walker. Amer. Math. Monthly 128 (2021), no. 10, 868-887. arXiv*Sobolev embedding for M^{1,p} spaces is equivalent to a lower bound of the measure.*With P.Górka and P.Hajłasz. J. Funct. Anal. 279 (2020), no. 7, 108628 arXiv*A note on metric-measure spaces supporting Poincaré inequalities.*With P.Hajłasz. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2020), no.1, 15-23. arXiv*Characterizing Lusin's Theorem and the Density of Continuous Functions in Lebesgue Spaces via the Regularity of the Measure.*With M.Mitrea and B.Schmutzler. (preprint)*Whitney-type extensions with control of the modulus of continuity in geometrically doubling quasi-metric spaces.*With I.Mitrea and M.Mitrea. Commun. Pure Appl. Anal., 12 (2013), No. 1, pp. 59-88. PDF*Sharp geometric maximum principles for semi-elliptic operators with singular drift.*With D.Brigham, V.Maz'ya, M.Mitrea and E.Ziadé, Math. Res. Lett., Vol.18 (2011), No. 04, pp. 613-620. PDF*On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-Oleinik Boundary Point Principle.*With D.Brigham, V.Maz'ya, M.Mitrea and E.Ziadé, Journal of Mathematical Sciences, Vol. 176 (2011), No. 3, pp. 281-360.*Topics in Harmonic Analysis and Partial Differential Equations: Extension Theorems and Geometric Maximum Principles.*Masters Thesis. (2011). PDF