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SHARP GEOMETRIC MAXIMUM PRINCIPLES FOR
SEMI-ELLIPTIC OPERATORS WITH SINGULAR DRIFT

Ryan Alvarado, Dan Brigham, Vladimir Maz’ya,
Marius Mitrea, and Elia Ziadé

Abstract. We discuss a sharp generalization of the Hopf–Oleinik boundary point prin-
ciple (BPP) for domains satisfying an interior pseudo-ball condition, for non-divergence

form, semi-elliptic operators with singular drift. In turn, this result is used to derive
a version of the strong maximum principle under optimal pointwise blow-up conditions
for the coefficients of the differential operator involved. We also explain how a uniform
two-sided pseudo-ball condition may be used to provide a purely geometric characteri-

zation of Lyapunov domains, and clarify the role this class of domains plays vis-à-vis to
the BPP.

The strong maximum principle (SMP) is a cornerstone result in the theory of
second-order elliptic partial differential equations, since it permits deriving informa-
tion about solutions of differential inequalities without any explicit a priori knowledge
of the solutions themselves. The traditional formulation of the SMP typically re-
quires the coefficients of the differential operator to be locally bounded (among other
things; cf., e.g., [3,4,13,14]). Here we present a version of the SMP for second-order,
non-uniformly elliptic operators in non-divergence form, in which this assumption is
relaxed to an optimal pointwise blow-up condition. We stress that no measurabil-
ity assumptions are made on the coefficients of the differential operator in question.
Specifically, we have the following theorem.

Theorem 1. Let Ω be a non-empty, connected, open subset of R
n, and suppose that

a second-order differential operator in non-divergence form (without a zeroth-order
term)

(1) L := −Tr
(
A∇2

)
+�b · ∇ := −

n∑

i,j=1

aij∂i∂j +
n∑

i=1

bi∂i

and which is (possibly non-uniformly) elliptic in Ω, has been given. Also, assume that
for each point x0 ∈ Ω and each vector ξ ∈ Sn−1 (the unit sphere centered at the origin
of R

n) there exists a real-valued function ω̃ = ω̃x0,ξ satisfying

(2) ω̃ ∈ C 0
(
[0, 1]

)
, ω̃(t) > 0 for each t ∈ (0, 1],

∫ 1

0

ω̃(t)
t

dt < +∞,
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and with the property that

(3)

lim sup
(x−x0)·ξ>0

x→x0

(
TrA(x)

)
+ max

{
0,�b(x) · ξ

}
+

(∑n
i=1 max

{
0,−bi(x)}

)
|x− x0|

ω̃((x−x0)·ξ)
(x−x0)·ξ

(
(A(x)ξ) · ξ

) < +∞.

Let u ∈ C 2(Ω) be a function which satisfies the differential inequality (Lu)(x) ≥ 0 for
all points x ∈ Ω. Then if u assumes a global minimum value at some point in Ω, it
follows that u is constant in Ω.

This result is quantitatively sharp. To see this, take Ω to be the n-dimensional
Euclidean unit ball centered at the origin and consider

(4) L := − 1
n+2Δ +�b(x) · ∇, where �b(x) :=

{
|x|−2x if x ∈ B(0, 1) \ {0},
0 if x = 0,

and the function u ∈ C 2
(
B(0, 1)

)
given by u(x) := |x|4 for each x ∈ B(0, 1).

Then

(5)
(Lu)(x) = 0 for each x ∈ B(0, 1),

u ≥ 0 in B(0, 1), u(0) = 0 and u
∣
∣
∂B(0,1)

= 1,

which shows that the SMP fails in this case. To understand the nature of this failure,
observe that given a function ω̃ : (0, 1) → (0,+∞) and a vector ξ ∈ Sn−1, condition
(3) entails

(6) lim sup
x→0

x·ξ>0

|x|−2 x · ξ
ω̃(x·ξ)

x·ξ
< +∞

which, when specialized to the case when x approaches 0 along the ray {tξ : t > 0},
implies the existence of some constant c ∈ (0,+∞) such that ω̃(t) ≥ c for all small
t > 0. Of course, this would prevent ω̃ from satisfying Dini’s integrability condition
stipulated in (2).

In fact, Theorem 1 is a corollary of a sharp version of the boundary point principle
(BPP) stated in Theorem 2 below which, in effect, is the main result of this note.
It has been long recognized that the BPP has a distinct geometrical character, both
in its formulation and proof. For example, Zaremba [15], Hopf [7] and Oleinik [12]
have proved such BPPs in domains satisfying an interior ball condition. Our Theo-
rem 2 provides a sharp version of their results in which the interior ball condition is
replaced by an interior pseudo-ball condition, which we will define shortly (cf. (8)).
As such, our result is related to the BPPs established in a series of papers beginning
in the early 1970s, by Kamynin and Khimchenko (cf. [8–11]), in which they have
weakened Zaremba’s interior ball condition to a paraboloid condition. This being
said, our pseudo-ball involves less demanding assumptions than those imposed on the
paraboloid considered by these authors (e.g., we do not require any differentiability
conditions on the shape function ω; see (9) and (10) below). Also, significantly, the
coefficients of the differential operators for which our theorem holds are not necessar-
ily bounded or measurable (in contrast to [7,8,10–12], and others), the matrix of top
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coefficients is only degenerately elliptic, and the coefficients of the lower-order terms
are allowed to blow up at an optimal rate, dictated by the geometry of the domain.

In order to be specific, we need to introduce some relevant notation and terminol-
ogy. Given

(7)
R ∈ (0,+∞) and ω ∈ C 0

(
[0, R]

)
satisfying

ω(0) = 0 and ω(t) > 0 for all t ∈ (0, R],

we define the pseudo-ball with shape function ω, apex x0 ∈ R
n, amplitude a > 0,

truncation height b > 0, and direction vector h ∈ Sn−1, to be the subset of R
n

described as

(8) G ω
a,b(x0, h) :=

{
x ∈ B(x0, R) : a|x− x0|ω(|x− x0|) < (x− x0) · h < b

}
.

It is relevant to note that the family of pseudo-balls makes the transition between
truncated circular cones (which occur in the limiting case ω ≡ const.) and genuine
Euclidean balls (or, rather, solid spherical caps, which correspond to the case when
ω(t) ≡ t).1

Lastly, a proper, non-empty subset Ω of R
n is said to satisfy an interior pseudo-ball

condition at a point x0 ∈ ∂Ω with shape function ω as in (7) if there exist a, b > 0
and h ∈ Sn−1 such that G ω

a,b(x0, h) ⊆ Ω.

Theorem 2. Suppose that Ω is a non-empty, proper, open subset of R
n and that

x0 ∈ ∂Ω is a point with the property that Ω satisfies an interior pseudo-ball condition
at x0, say G ω

a,b(x0, h) ⊆ Ω, for some parameters a, b, R ∈ (0,+∞), direction vector
h = (h1, . . . , hn) ∈ Sn−1, and a shape function ω : [0, R] → [0,+∞) exhibiting the
following features:

ω ∈ C 0
(
[0, R]

)
, ω(t) > 0 for t ∈ (0, R], sup

0<t≤R

(ω(t/2)
ω(t)

)
< +∞, and(9)

∃C ∈ (0,+∞) such that
ω(t1)
t1

≤ C
ω(t0)
t0

whenever 0 < t0 ≤ t1 ≤ R.(10)

Also, consider a non-divergence form, second-order, differential operator (without a
zeroth-order term)

L := −
n∑

i,j=1

aij∂i∂j +
n∑

i=1

bi∂i,(11)

where aij , bi : Ω −→ R, 1 ≤ i, j ≤ n, are such that
n∑

i,j=1

aij(x)ξiξj ≥ 0 for every x ∈ G ω
a,b(x0, h) and every ξ = (ξ1, . . . , ξn) ∈ R

n,(12)

and
n∑

i,j=1

aij(x)hihj > 0 for every x ∈ G ω
a,b(x0, h).(13)

1The term “pseudo-ball” has been chosen faute de mieux, primarily because of the latter

observation.
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In addition, suppose that there exists a real-valued function ω̃ satisfying

(14) ω̃ ∈ C 0
(
[0, R]

)
, ω̃(t) > 0 for each t ∈ (0, R], and

∫ R

0

ω̃(t)
t

dt < +∞,

with the property that

(15) lim sup
G ω

a,b(x0,h)�x→x0

ω(|x−x0|)
|x−x0|

(∑n
i=1 a

ii(x)
)

ω̃((x−x0)·h)
(x−x0)·h

(∑n
i,j=1 a

ij(x)hihj

) < +∞,

and
(16)

lim sup
G ω

a,b(x0,h)�x→x0

max
{

0,
∑n

i=1 b
i(x)hi

}
+

(∑n
i=1 max

{
0,−bi(x)}

)
ω(|x− x0|)

ω̃((x−x0)·h)
(x−x0)·h

(∑n
i,j=1 a

ij(x)hihj

) < +∞.

Finally, suppose that u ∈ C 0(Ω ∪ {x0}) ∩ C 2(Ω) is a real-valued function satisfying

(17) (Lu)(x) ≥ 0 for each x ∈ Ω, u(x) > u(x0) for each x ∈ Ω,

and fix a vector �� ∈ Sn−1 satisfying the transversality condition �� · h > 0.
Then there exist ε > 0 for which x0 + t�� ∈ Ω whenever t ∈ (0, ε), a compact subset

K of Ω depending only on the geometrical characteristics of G ω
a,b(x0, h), and a constant

κ > 0 depending only on the quantities in (15) and (16), �� · h, (
infK u

) − u(x0), as
well as the pseudo-ball character of Ω at x0, with the property that

(18) lim inf
t→0+

u(x0 + t��) − u(x0)
t

≥ κ.

Clearly, the last condition in (9) is satisfied if ω is non-decreasing, while (10) is sat-
isfied if ω(t)/t is non-increasing. Let us also note that no measurability assumptions
are made on the coefficients of L, and that the class of second-order, non-divergence
form, differential operators considered in Theorem 2 is invariant under multiplication
by arbitrary positive functions (a desirable feature given that if the BPP holds for an
operator L as in (11) and if ψ > 0 then the BPP continues to hold for ψL). In addi-
tion, the said class contains all uniformly elliptic, second-order, non-divergence form
differential operators with bounded coefficients, granted that the domain Ω satisfies a
pseudo-ball condition at x0 ∈ ∂Ω whose shape function ω satisfies Dini’s integrability
condition (in which scenario (15) and (16) are verified if one takes ω̃ := ω).

Most significantly, by means of concrete counterexamples it is possible to show
that the BPP described in Theorem 2 is sharp. To see this, consider the case when
Ω := {x ∈ R

n
+ : xn < 1}, the point x0 is the origin in R

n, and

(19) L := −Δ +
ψ(xn)
xn

∂

∂xn
in Ω,

where ψ : (0, 1] → (0,+∞) is a continuous function with the property that

(20)
∫ 1

0

ψ(t)
t

dt = +∞.
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Then, if

(21) u(x1, . . . , xn) :=
∫ xn

0

exp
{
−

∫ 1

ξ

ψ(t)
t

dt
}
dξ for each (x1, . . . , xn) ∈ Ω,

it follows that u ∈ C 2(Ω), the function u may be continuously extended at 0 ∈ R
n by

setting u(0) := 0, and u > 0 in Ω. Furthermore,

(22)

∂u

∂xn
= exp

{
−

∫ 1

xn

ψ(t)
t

dt
}
,

∂2u

∂x2
n

=
ψ(xn)
xn

exp
{
−

∫ 1

xn

ψ(t)
t

dt
}

=
ψ(xn)
xn

∂u

∂xn
in Ω,

from which we deduce that Lu = 0 in Ω, and limΩ�x→0(∇u)(x) = 0, thanks to (20).
Hence, the conclusion of the BPP formulated in Theorem 2 fails in this case (say, for
the choice �� := (0, . . . , 0, 1) ∈ R

n). The sole cause of this breakdown is the inability
to find a function ω̃ satisfying Dini’s integrability condition and such that (16) holds.
Indeed, in the setting we are currently considering �b(x) =

(
0, . . . , 0, ψ(xn)/xn

)
for

each x = (x1, . . . , xn) ∈ Ω, and since Ω satisfies an interior pseudo-ball condition at
0 with shape function, say ω(t) ≡ t, and direction vector h := (0, . . . , 0, 1) ∈ Sn−1,
condition (16) reduces to (for some fixed a, b > 0)

(23) lim sup
G ω

a,b(0,h)�x→0

(max{0,�b(x) · h}
x−1

n ω̃(xn)

)
= lim sup

G ω
a,b(0,h)�x→0

(ψ(xn)
ω̃(xn)

)
< +∞.

In turn, if true, this would force ω̃(t) ≥ c ψ(t) for all t > 0 small (for some fixed
constant c > 0). However, in light of (20), this would prevent ω̃ from satisfying
Dini’s integrability condition. This proves the optimality of condition (16) in Theo-
rem 2. A variant of this counterexample also shows the optimality of condition (15).
Specifically, let Ω, ��, x0, u be as before and, this time, consider

(24) L := −
(n−1∑

i=1

∂2

∂x2
i

+
xn

ψ(xn)
∂2

∂x2
n

)
+

∂

∂xn
in Ω.

Obviously, Lu = 0 in Ω and, as pointed out before, Ω satisfies an interior pseudo-
ball condition at the origin with direction vector h = (0, . . . , 0, 1) ∈ Sn−1 and shape
function ω(t) ≡ t. As such, condition (15) would entail (for this choice of ω, after
some simple algebra), ω̃(t) ≥ c ψ(t) for all t > 0 small. In concert with (20) this
would, of course, prevent ω̃ from satisfying Dini’s integrability condition.

Moving on, in the last part of this note we wish to comment on the significance of
the pseudo-ball condition appearing in the formulation of Theorem 2, and explain how
this may be used for the purpose of describing the analytical regularity (of Euclidean
domains) in purely geometrical terms. To set the stage we shall make a few definitions.
A proper, non-empty subset Ω of R

n is said to satisfy a uniform interior pseudo-ball
condition near x0 ∈ ∂Ω provided there exists r > 0 with the property that Ω satisfies
an interior pseudo-ball condition at each point in B(x0, r) ∩ ∂Ω with the same shape
function, amplitude and truncation height. Going further, a set Ω as above is said to
satisfy a uniform two-sided pseudo-ball condition near x0 ∈ ∂Ω if both Ω and R

n \ Ω
satisfy a uniform interior pseudo-ball condition near x0. Moreover, global versions of
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the last two local conditions are defined naturally, by requiring that the said properties
hold near all boundary points.

Next, recall that a proper, non-empty open subset Ω of R
n is called a domain

of class C 1,ω if, near each of its boundary points, the domain in question may be
locally described (up to an isometric change of variables) in terms of upper-graphs
of C 1 functions whose first-order partial derivatives are continuous with modulus of
continuity ω. Of course, this condition amounts to requiring that Ω is a domain of
class C 1 with the property that its outward unit normal is continuous with modulus
of continuity ω, i.e., Ω is a Lyapunov2 domain (cf. with [6, Chapter I]). Finally, the
quality of being of class C 1,ω near a specific boundary point is introduced analogously.3

After this preamble, here is the theorem which provides a purely geometric char-
acterization of the class of locally Lyapunov domains in R

n, alluded to (a couple of
paragraphs) above.

Theorem 3. Let Ω be an open, proper, non-empty subset of R
n and suppose that ω

is a function fulfilling the conditions listed in (7), and with the additional property
that

(25) ω is strictly increasing and satisfies lim
λ→0+

(
sup

t∈(0,min{R,R/λ}]
ω(λ t)
ω(t)

)
= 0.

Then, given x0 ∈ ∂Ω, the set Ω satisfies a uniform two-sided pseudo-ball condition
with shape function ω near x0 if and only if Ω is of class C 1,ω near x0.

As a corollary, if ∂Ω is compact, then Ω satisfies a global uniform two-sided pseudo-
ball condition with shape function ω if and only if Ω is a domain of class C 1,ω.

As a consequence of Theorem 3, granted that ω is a function as in (7) and (25),
the BPP holds in any domain of class C 1,ω under the analytical hypotheses spec-
ified in Theorem 2 (which include all uniformly elliptic, second-order operators in
non-divergence form, with bounded coefficients4). In particular, the BPP holds for
all uniformly elliptic, second-order operators in non-divergence form, with bounded
coefficients in domains of class C 1 with the property that the modulus of continuity
of their outward unit normal satisfies Dini’s integrability condition (sometimes called
Dini-Lyapunov domains; cf., e.g., [2, pp. 143–144]). In the class of C 1 domains, the
result just described is geometrically sharp. Indeed, this should be contrasted with
the fact that there exists a bounded domain Ω of class C 1, which is even convex and
C∞ near all but one of its boundary points, but for which the BPP fails even for such
basic differential operators as L := −Δ.

To see that this is the case, denote by 0 the origin of R
2, set e2 := (0, 1) ∈ R

2,
and consider the shape function ω∗(t) := 1

| ln t| if t ∈ [0, 1
e ] (with the convention that

ω∗(0) := 0). A careful inspection shows that G ω∗
1,1(0, e2) is of class C 1 near 0, as

well as of class C∞ near any point in ∂G ω∗
1,1(0, e2) \ {0} which is sufficiently close to

the origin. In addition, G ω∗
1,1(0, e2) is convex near 0. This allows one to construct a

bounded, convex, domain Ω ⊆ B
(
0, e−1

)
of class C 1, such that 0 ∈ ∂Ω, which is C∞

2Occasionally also spelled as Liapunov or Lyapunoff.
3As is customary, the notation C 1,α is used in lieu of C 1,ω when ω(t) ≡ tα for some α ∈ (0, 1].
4This already extends G. Giraud’s BPP, formulated in [5] for C 1,α domains, α > 0, and uniformly

elliptic operators with bounded coefficients satisfying certain regularity conditions.
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near any point in ∂Ω \ {0}, and which coincides with G ω∗
1,1(0, e2) near 0. Hence, in

particular,

(26) Ω and
{

(x, y) ∈ B
(
0, e−1

) \ {0} :
√
x2 + y2 + y ln

√
x2 + y2 < 0

}

coincide near 0 and, as such, Ω satisfies an interior pseudo-ball condition at 0 ∈ ∂Ω
with shape function ω∗. Next, pick ε ∈ (0, 1

2 ) and define u : Ω ∪ {0} → R by setting
u(0) := 0 and

(27) u(x, y) :=
(
y +

√
x2 + y2

ln
√
x2 + y2

)(−ln
√
x2 + y2

)−ε if (x, y) ∈ Ω.

Then, clearly, u ∈ C 0(Ω ∪ {0}) ∩ C 2(Ω) and u(0) < u(x, y) for every (x, y) ∈ Ω.
Working in polar coordinates (r, θ), an elementary calculation (recall that L := −Δ)
shows that, in Ω,

(28)

(Lu)(r, θ) =
1

r(− ln r)ε+3

{
(1−2ε sin θ)(ln r)2+(ε+1)(ε sin θ−2) ln r+(ε+1)(ε+2)

}
.

Since the squared logarithm in the curly brackets above has a positive coefficient given
that ε ∈ (0, 1

2 ), matters may be arranged so that (Lu)(x, y) ≥ 0 at each point (x, y)
in Ω. On the other hand, a direct calculation (which uses the fact that ε > 0) gives
that limy→0+(∂yu)(x, y) = 0, uniformly in x. Thus, ultimately, the lower directional
derivative of u at 0 along e2 is in fact null and, hence, the conclusion in Theorem 2
fails. The source of this breakdown is the fact that for any continuous function
ω : [0, R] → [0,+∞) and any a, b > 0 with the property that G ω

a,b(0, e2) ⊆ Ω, from
(26) we deduce that ω(t) ≥ a−1| ln t|−1 for each t > 0 sufficiently small. Granted this
and given that

∫ 1/e

0
1

t| ln t| dt = +∞, we conclude that ω necessarily fails to satisfy
Dini’s integrability condition. In concert with (15) which, in the case when L = −Δ,
forces ω̃(t) ≥ c ω(t) for all t > 0 small, this ultimately shows that ω̃ fails to satisfy
Dini’s integrability condition demanded in (14).

In closing, it is illuminating to point out that when ω(t) ≡ tα, for some fixed
α ∈ (0, 1], Theorem 3 provides a purely geometric description of the family of domains
of class C 1,α. In particular, corresponding to the case when α := 1, we have the
following purely geometric characterization of domains of class C 1,1: a non-empty,
proper, open subset Ω of R

n, with compact boundary, is a domain of class C 1,1 if and
only if it satisfies a uniform two-sided ball condition. (Recall that the latter condition
stands for the demand that there exists r > 0 such that for every x ∈ ∂Ω one may
find h(x) ∈ Sn−1 for which B(x+ rh(x), r) ⊆ Ω and B(x− rh(x), r) ⊆ R

n \ Ω.)
Proofs of the above results, as well as other related matters of interest such as

applications to boundary value problems, will appear elsewhere (cf. [1]).
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