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Abstract. We discuss geometrical scenarios guaranteeing that functions de-
fined on a given set may be extended to the entire ambient, with preservation

of the class of regularity. This extends to arbitrary quasi-metric spaces work

done by E.J. McShane in the context of metric spaces, and to geometrical-
ly doubling quasi-metric spaces work done by H. Whitney in the Euclidean

setting. These generalizations are quantitatively sharp.

1. Introduction. One important problem in analysis which has received a consid-
erable amount of attention over the years pertains to the issue of extending classes
of functions satisfying certain regularity properties (e.g., continuity, Lipschitziani-
ty) from a subset of an ambient to the entire space while retaining the regularity
properties in question. Henceforth, this generic question will be referred to as the
extension problem (with the tacit agreement that this is allowed to acquire various
concrete nuances in subsequent re-formulations). For example, if E is a closed sub-
set of a metric space (X, d), then Hausdorff’s formula (cf., e.g., [7, Exercise 4.1.F])

F (x) :=

{
inf
{
f(y) + d(x,y)

distd(x,E) − 1 : y ∈ E
}

if x ∈ X \ E,

f(x) if x ∈ E,
(1)

gives an extension of a given continuous function f : E → R to the entire ambient
space which is continuous on X (above, distd(x,E) := inf{d(x, y) : y ∈ E} for each
x ∈ X). This may be thought of as an explicit version of Tietze’s extension theorem
(classically formulated in normal topological spaces; cf., e.g., [24, Theorem 35.1, p.
219]) in the setting of metric spaces. In relation to Hausdorff’s formula, it is also
significant to note that the assignment f 7→ F described in (1) is nonlinear.
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functions, Lipschitz functions, partition of unity, Whitney extension, quantitative Urysohn lemma,
Whitney decomposition.

59

http://dx.doi.org/10.3934/cpaa.2013.12.59


60 RYAN ALVARADO, IRINA MITREA AND MARIUS MITREA

Regarding the extension of functions with preservation of higher regularity we
wish to mention the pioneering work of E.J. McShane [22], H. Whitney [32] and M.D.
Kirszbraun [17]. To state the main result in [22] we shall need some notation. Given
a metric space (X, d), denote by Lip(X, d) the vector space of real-valued functions
defined on X which do not increase distances by more than a fixed multiplicative
factor, i.e.,

Lip(X, d) :=
{
f : X → R : ‖f‖Lip(X,d) := sup

x,y∈X,x 6=y

|f(x)−f(y)|
d(x,y) < +∞

}
. (2)

The question concerning McShane’s work in [22] is whether given a metric space
(X, d), a nonempty set E ⊆ X, and a Lipschitz function f ∈ Lip(E, d) (regarding
E, equipped with the restriction of d to E × E as a metric space in its own right),
it is possible to find F ∈ Lip(X, d) such that

F
∣∣
E

= f and ‖F‖Lip(X,d) = ‖f‖Lip(E,d). (3)

McShane’s elegant solution is based on the observation that either

f∗(x) := sup
{
f(y)− ‖f‖Lip(E,d)d(x, y) : y ∈ E

}
, ∀x ∈ X, (4)

or

f∗(x) := inf
{
f(y) + ‖f‖Lip(E,d)d(x, y) : y ∈ E

}
, ∀x ∈ X, (5)

are such extensions for the given function f . In fact, the upper and lower Mc-
Shane extensions constructed in (4) and (5) are extremal in the following sense: if
F ∈ Lip(X, d) is a function with the property that F |E = f and ‖F‖Lip(X,d) =
‖f‖Lip(E,d), then necessarily f∗ ≤ F ≤ f∗ on X.

While McShane’s extension theorem just described has the distinct attribute that
it works in the general setting of arbitrary metric spaces, as with (1) before, the
extension operators f 7→ f∗ and f 7→ f∗ are nonlinear. Furthermore, McShane’s
original argument in [22] does not yield an extension satisfying (3) in the more
general case when the Lipschitz functions in question are vector-valued. The latter
scenario is considerably more subtle and a remarkable positive result in this regard
has been established by M.D. Kirszbraun in 1934. Specifically, Kirszbraun’s theorem
(cf. [17, p. 104, Hauptsatz I]) asserts that if E is a subset of Rn then any vector-
valued Lipschitz function f : E → Rm may be extended to a Lipschitz function
F : Rn → Rm which has the same Lipschitz constant as f . A further generalization
of this result to the case when the Euclidean spaces Rn, Rm are replaced by two
arbitrary Hilbert spaces H1, H2 may be found in [28, p. 21], via a proof which
utilizes Hausdorff’s maximal principle as well as geometric characteristics of Hilbert
spaces. This is relevant since the corresponding statement for Banach space-valued
Lipschitz functions is not true in general, even for finite-dimensional Banach spaces
(cf., e.g., [28, p. 20] for a discussion which shows that the preservation of the
Lipschitz constant fails even in such simple cases as Rm equipped with some `p
norm with p 6= 2; see also [10, p. 202] for a similar discussion involving the `∞
norm). Kirszbraun’s theorem was subsequently reproved by F.A. Valentine in [30],
[31] (and, for this matter, it is occasionally referred to as the Kirszbraun-Valentine
theorem).

In the same year, 1934, in which the papers [22], [17] of McShane and Kirszbraun
have appeared, H. Whitney has published a rather influential article, [32], dealing
with the extension problem. Based on a different circle of ideas, Whitney succeeds
in constructing an extension operator in the Euclidean setting which is both linear
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and preserves higher degrees of smoothness. Somewhat more specifically, in [32],
Whitney gave necessary and sufficient conditions on an array of functions {fα}|α|≤m
defined on a closed subset E of Rn ensuring the existence of a function F ∈ Cm(Rn)
with the property that (∂αF )|E = fα whenever the multi-index α satisfies |α| ≤ m.
In addition, Whitney’s extension operator {fα}|α|≤m 7→ F is universal (in the
sense that it simultaneously preserves all orders of smoothness), as well as linear.
A timely exposition of this result may be found in E.M. Stein’s monograph [29,
pp. 170–180]. In particular, the proof of [29, Theorem 3, p. 174] dealing with
the extension problem in the class of real-valued Hölder (and Lipschitz) continuous
functions defined in open subsets of Rn makes use of three basic ingredients, namely:

[i ] the existence of a Whitney decomposition of an open subset of Rn (into
Whitney balls of bounded overlap),

[ii ] the existence of a C∞ smooth partition of unity subordinate (in an appro-
priate, quantitative manner) to such a decomposition, and

[iii ] differential calculus in open subsets of Rn along with other specific structural
properties of the Euclidean space.

Extension theorems of the type discussed above are useful for a tantalizing array
of purposes. On the theoretical side, such results constitute a versatile, powerful tool
for dealing with problems in the areas of Harmonic Analysis and Partial Differential
Equations, (cf., e.g., the discussion in [12], [14] [19], [29], as well as in the references
cited there), while on the practical side they have found to be useful in a variety
of areas of Applied Mathematics (cf., e.g., [3], [4], [27] for applications to image
processing). The work initiated by McShane and Whitney in the 1930’s continues
to exert a significant degree of influence, and the extension problem continues to
be an active area of research. For example, the monograph [15] by A. Jonsson
and H. Wallin is devoted to establishing Whitney-type extension results for (arrays
of) functions defined on closed subsets of Rn whose smoothness is measured on
Besov and Triebel-Lizorkin scales (intrinsically defined on those closed sets). Also,
in [2], Y. Brudnyi and P. Shvartsman have produced intrinsic characterizations of
the restrictions to a given closed subset of Rn of functions from C 1,ω(Rn) and,
building on this work, in a series of papers (cf. [8]-[9] and the references therein)
C. Fefferman has further developed this circle of ideas by producing certain sharp
versions of Whitney’s extension result in the higher order smoothness case.

In contrast with C. Fefferman’s work just mentioned, which deals with preserva-
tion of higher smoothness (C k,ω with k ≥ 1, i.e., functions whose partial derivatives
exist up to order k and have modulus of continuity ω) in the Euclidean setting,
our goal here is the study of the extension problem at the low end of the spectrum
of smoothness (corresponding to C k,ω in which one takes k = 0), and with the
Euclidean ambient replaced by an abstract quasi-metric space (X, ρ). In this set-

ting, the class of smoothness we wish to preserve under extension is denoted by Ċ ω

and generalizes the class of Lipschitz functions in metric spaces. More specifically,
functions in Ċ ω have moduli of continuity controlled in terms of a fixed mapping
ω : [0,+∞)→ [0,+∞) assumed (among other things) to be β-subadditive, for some
finite parameter β related to the degree to which ρ fails to be a genuine distance on
X, that is,

0 < β ≤

(
log2

[
sup

x,y,z∈X
not all equal

ρ(x, y)

max{ρ(x, z), ρ(z, y)}

])−1
. (6)
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The reader is referred to Definition 3.1 as well as to (40)-(41) in the body of the
paper for more details. Here we only wish to note that in the case when the quasi-
metric space (X, ρ) is a genuine metric space (as in McShane’s work in [22]), it
follows from (6) that β = 1 is an admissible value which, in turn, allows us to
consider ω(t) := ct for all t ≥ 0 (with c ∈ (0,+∞) fixed). This is significant since

Ċ ω becomes the class of Lipschitz functions precisely for such choices of ω.
En route to the main result of the paper (reviewed below), we shall need to

first generalize McShane’s approach from metric spaces and Lipschitz functions to
general quasi-metric spaces and functions in the class Ċ ω. In a version devoid of
technical jargon, this theorem reads as follows (see also Theorem 3.3 in the body of
the paper):

Theorem 1.1. Let (X, ρ) be a quasi-metric space and let ω : [0,+∞) → [0,+∞)
be such that

ω is non-decreasing on [0,+∞),
ω(t) > 0 for all t > 0, ω(0) = 0,
∃β, finite, so that (6) holds and
ω
(
(sβ + tβ)1/β

)
≤ ω(s) + ω(t) for all s, t ≥ 0.

(7)

Then there exists a finite constant C = C(ρ, β) > 0 with the property that if E ⊆ X
is a set of cardinality ≥ 2 and if f : E → R is a given function, then there exists
F : X → R such that f = F

∣∣
E

and

sup
x,y∈X,x 6=y

|F (x)− F (y)|
ω(ρ(x, y))

≤ C sup
x,y∈E,x6=y

|f(x)− f(y)|
ω(ρ(x, y))

. (8)

The main result in this paper, discussed in Theorem 1.2 below, provides a solution
to the extension problem via the construction of a bounded linear extension operator
E : f 7→ F which preserves the class Ċ ω. In contrast to the work of Whitney in [32]
carried out in the Euclidean setting, this is accomplished by working in a quasi-
metric space (X, ρ) assumed to be geometrically doubling. The latter condition,
which may me thought of as a quantitative, scale-invariant version of the fact that
ρ-balls are totally bounded1, amounts to the ability of covering any given ρ-ball by at
most a fixed number of ρ-balls twice as small as the original one (cf. Definition 6.1).
More specifically, in such a context we prove the following extension theorem:

Theorem 1.2. Let (X, ρ) be a geometrically doubling quasi-metric space, fix a
closed subset E of X of cardinality at least two, and suppose that the function
ω : [0,+∞)→ [0,+∞) is as in (7). In addition, suppose that (V , ‖ · ‖V ) is a quasi-
normed vector space. Then there exists an operator E mapping the vector space of
V -valued functions defined on E into the vector space of V -valued functions defined
on X linearly and such that

sup
x,y∈X,x 6=y

‖(E f)(x)− (E f)(y)‖V
ω(ρ(x, y))

≤ C sup
x,y∈E,x6=y

‖f(x)− f(y)‖V
ω(ρ(x, y))

, (9)

for any function f : E → V , where C = C(ρ, β,V ) ∈ (0,+∞) is a constant
independent of f .

The reader is referred to Theorem 7.1 in the body of the paper for a somewhat more
refined and informative formulation of this result.

1A subset E of a quasi-metric space (X, ρ) is called totally bounded provided for any r > 0
there exists a covering of E by a finite family of ρ-balls of radii r.
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The next two paragraphs contain some comments about the relevance and sharp-
ness of Theorem 1.1 and Theorem 1.2. The fact that Theorems 1.1-1.2 are formu-
lated in the setting of quasi-metric spaces is rather significant for applications. In
this vein, it is worth recalling that the most natural setting in which the bulk of
the Calderón-Zygmund theory of singular integral operators may be developed is
that of spaces of homogeneous type2. However, as opposed to the setting of metric
spaces (considered in [17], [22], [32]) where Lipschitz functions are abundant3, the
space of Lipschitz functions is often trivial (i.e., it reduces to just constants) in the
framework of quasi-metric spaces. For example, elementary calculus shows that this
is the case for (Xo, ρo) if, for some fixed γ > 1, we take

Xo a nonempty, connected, open subset of Rn
and ρo(x, y) := |x− y|γ for every x, y ∈ Xo.

(10)

In turn, the fact that the only functions which are globally Lipschitz on such a quasi-
metric space (Xo, ρo) are constant functions shows that the extension problem of
Lipschitz functions fails to have a solution in this setting. Indeed, if the cardinality
of E ⊆ Xo is finite and ≥ 2, then any non-constant real-valued function f defined
on E is Lipschitz but does not extend to a Lipschitz function F on (Xo, ρo), since
the latter would have to be constant.

The moral of this discussion is that once the focus shifts from metric spaces to
the more general category of quasi-metric spaces, one necessarily has to formulate
the extension problem for classes of functions other than Lipschitz. Given such a
quasi-metric space (X, ρ), one natural replacement of Lip(X, ρ) is the class of Hölder
functions of order β ∈ (0,+∞),

Ċ β(X, ρ) :=
{
f : X → R : sup

x,y∈X,x 6=y

|f(x)−f(y)|
ρ(x,y)β

< +∞
}
, (11)

and our space Ċ ω reduces precisely to (11) when ω(t) := tβ . Then, if β is as in (6)
it follows that this ω satisfies all conditions in (7), hence Theorems 1.1-1.2 work for
the Hölder class (11) granted (6). Remarkably, this corollary is sharp. To see this,
for some fixed γ > 0 consider (Xo, ρo) as in (10) and note that, in this scenario, (6)
becomes 0 < β ≤ γ−1. On the other hand, if β > γ−1 then, since Hölder functions
of order β with respect to ρo are Hölder functions of order βγ > 1 with respect
to the standard Euclidean distance in the nonempty, open, connected subset Xo of
Rn, it follows that this Hölder class contains only constant functions. Hence, much
as in the discussion following (10), the extension problem does not have a solution
in this setting.

To the best of our knowledge, this is the first time the extension problem (as
addressed in Theorems 1.1-1.2) has been considered in the setting of quasi-metric
spaces. While the strategy for dealing with Theorem 1.1 is related to that employed
in [22] where metric spaces (and Lipschitz functions) have been considered, the
geometry of quasi-metric spaces can be significantly more intricate. To cope with
this aspect, we employ a sharp metrization theorem (cf. Theorem 2.1) recently
established in [23] which, in turn, extends work by R.A. Maćıas and C. Segovia
in [20]. Among other things, given a quasi-metric space (X, ρ) this allows us to
identify the optimal range of exponents β with the property that ρβ is pointwise
equivalent to a metric on X.

2A space of homogeneous type is a quasi-metric space equipped with a doubling measure.
3Trivially, if (X, d) is a metric space then for each fixed xo ∈ X the function d(·, xo) : X → R

is Lipschitz.
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Our strategy for dealing with Theorem 1.2 makes essential use of Theorem 1.1.
More specifically, we use Theorem 1.1 in order to prove a quantitative Urysohn’s
lemma, stated as Theorem 4.1. Recall that the classical Urysohn’s lemma is a
separation result of a purely topological nature, involving continuous functions. The
point of Theorem 4.1 is that, in contrast with the classical setting, if the ambient
is a quasi-metric space then the continuity aspects of the separation phenomenon
alluded to above may be quantified (in terms of the quasi-distance between the two
sets being separated).

In turn, the quantitative Urysohn lemma presented in Theorem 4.1 is used to
produce a partition of unity (ϕj)j subordinate to a Whitney-type decomposition
(as discussed in Theorem 6.2) of an open set in a geometrically doubling quasi-

metric space, which consists of bump-functions belonging to the class Ċ ω and whose
normalization exhibits natural scaling-like properties. Roughly speaking, the above
scaling property regards the correlation between the Ċ ω semi-norms of the bump
functions (ϕj)j to the magnitude of the separation between the extreme level sets

ϕ−1j ({0}) and ϕ−1j ({1}), in a dilation invariant-like fashion. A precise formulation
may be found in Theorem 5.1.

Once these ingredients are in place, the incisive step in the proof of Theorem 1.2
is the actual set-up of a Whitney-type extension operator, based upon the Whitney
decomposition and Whitney-like partition of unity results just described. More
specifically, given a closed subset E of a geometrically doubling quasi-metric space
X, the extension operator we consider is

(E f)(x) :=

{
f(x) if x ∈ E,∑
j

f(pj)ϕj(x) if x ∈ X \ E, ∀x ∈ X, (12)

where f is an arbitrary V -valued function defined on E, (ϕj)j is a partition of unity
of the type described above, subordinate to a Whitney-type decomposition of the
open set X \ E into ρ-balls {Bj}j , and pj ∈ E is the “nearest” point in E to Bj .
Although the proof of Theorem 1.2 retains, in a broad sense, the strategy presented
in [29], the execution is necessarily different given the minimality of the structures
involved in the setting we are considering here (compare with [i]-[iii] listed earlier).
While this degree of generality is certainly desirable given the large spectrum of
applications of such a result, it is interesting to note that the absence of miracles
associated with differentiability, vector space structure, and Euclidean geometry
actually better elucidates the nature of the phenomenon at hand.

The layout of this paper is as follows. In Section 2 we review basic terminology
and results pertaining to quasi-metric spaces and classes of functions measuring
smoothness. In particular, here we record a sharp metrization theorem, recently
established in [23] extending earlier work in [20]. The main result in Section 3 is
Theorem 1.1, generalizing [22, Theorem 1, p. 838]. Section 4 deals with topolog-

ical separation properties by means of functions from the class Ċ ω and the main
result here, Theorem 4.1, may be regarded as a quantitative version of the classical
Urysohn lemma. In Section 5 we prove the existence of Whitney-like partitions of
unity as described in Theorem 5.1. Moving on, in Section 6 we discuss a Whitney-
type decomposition result which extends work by R. Coifman and G. Weiss in [5,
Theorem 3.1, p. 71] and [6, Theorem 3.2, p. 623] (see Theorem 6.2). Finally, in
Section 7, we formulate and prove our principal result in this paper, Theorem 7.1,
which is an extension result akin Whitney’s work in the Euclidean setting, formu-
lated in the context of geometrically doubling quasi-metric spaces.
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In closing, we wish to emphasize that our generalization of McShane and Whit-
ney’s results is done under minimal structural assumptions and without compro-
mising the quantitative aspects of the results in question. In addition, a significant
number of preliminary results proved here (e.g., a quantitative Urysohn lemma,
Whitney-like partitions of unity) are of independent interest and should be useful
for other problems in the areas of analysis on quasi-metric spaces.

2. Classes of functions quantifying continuity on quasi-metric spaces. In
this section we review the notion of quasi-metric space (along with related metric
and topological matters), discuss a recent sharp metrization theorem proved in [23],
and introduce certain classes of functions on quasi-metric spaces whose regularity
is suitably quantified.

To get started, given a nonempty set X, call a function ρ : X × X → [0,+∞)
a quasi-distance provided there exist two finite constants C0, C1 ≥ 1 with the
property that for every x, y, z ∈ X, one has

ρ(x, y) = 0⇐⇒ x = y,
ρ(y, x) ≤ C0ρ(x, y) and

ρ(x, y) ≤ C1 max{ρ(x, z), ρ(z, y)}.
(13)

In the sequel, we shall denote by Q(X) the collection of all quasi-distances on X.
Going further, call two functions ρ1, ρ2 : X ×X → [0,+∞) equivalent, and write
ρ1 ≈ ρ2, if there exist C ′, C ′′ ∈ (0,+∞) with the property that

C ′ρ1 ≤ ρ2 ≤ C ′′ρ1 on X ×X. (14)

It is then clear that if ρ ∈ Q(X) and ρ′ : X ×X → [0,+∞) is such that ρ′ ≈ ρ then
ρ′ ∈ Q(X) as well.

For each ρ ∈ Q(X) we define Cρ to be the smallest constant which can play the
role of C1 in the last inequality in (13), i.e.,

Cρ := sup
x,y,z∈X

not all equal

ρ(x, y)

max{ρ(x, z), ρ(z, y)}
∈ [1,+∞), (15)

and define C̃ρ to be the smallest constant which can play the role of C0 in the first
inequality in (13), i.e.,

C̃ρ := sup
x,y∈X
x6=y

ρ(y, x)

ρ(x, y)
∈ [1,+∞). (16)

By a quasi-metric space we shall understand a pair (X, ρ) where X is a set of
cardinality ≥ 2, and ρ is a quasi-distance on X. Given a quasi-metric space (X, ρ)
define the ρ-ball centered at x ∈ X with radius r > 0 to be

Bρ(x, r) := {y ∈ X : ρ(x, y) < r} . (17)

Also, call E ⊆ X bounded if E is contained in a ρ-ball, and define its diameter as

diamρ(E) := sup
{
ρ(x, y) : x, y ∈ E

}
. (18)

The ρ-distance between two arbitrary, nonempty sets E,F ⊆ X is naturally de-
fined as

distρ(E,F ) := inf{ρ(x, y) : x ∈ E, y ∈ F}, (19)

and if the set E = {x} for some point x ∈ X and F ⊆ X, we shall abbreviate
distρ(x, F ) := distρ({x}, F ).
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Turning to topological considerations, we note that any quasi-metric space (X, ρ)
has a canonical topology, naturally induced by the quasi-distance ρ which we will
denote by τρ. The latter is defined as the largest topology on X with the property
that for each point x ∈ X the family {Bρ(x, r)}r>0 is a fundamental system of
neighborhoods of x. In concrete terms,

O ∈ τρ
def⇐⇒ O ⊆ X and ∀x ∈ O ∃ r > 0 such that Bρ(x, r) ⊆ O. (20)

As is well-known, the topology induced by the given quasi-distance on a quasi-metric
space is metrizable. Below we shall review a recent result proved in [23] which is
a sharp quantitative version of this fact. To facilitate the subsequent discussion
we first make a couple of definitions. Assume that X is an arbitrary, nonempty
set. Given an arbitrary function ρ : X ×X → [0,+∞] and an arbitrary exponent
α ∈ (0,+∞] define the function

ρα : X ×X −→ [0,+∞] (21)

by setting for each x, y ∈ X

ρα(x, y) := inf
{( N∑

i=1

ρ(ξi, ξi+1)α
) 1
α

: N ∈ N and ξ1, . . . , ξN+1 ∈ X, (22)

(not necessarily distinct) such that ξ1 = x and ξN+1 = y
}
,

whenever α < +∞, and its natural counterpart corresponding to the case when
α = +∞, i.e.,

ρ∞(x, y) := inf
{

max
1≤i≤N

ρ(ξi, ξi+1) : N ∈ N and ξ1, . . . , ξN+1 ∈ X, (23)

(not necessarily distinct) such that ξ1 = x and ξN+1 = y
}
.

It is then clear from definitions that

∀ρ ∈ Q(X),∀α ∈ (0,+∞] =⇒ ρα ∈ Q(X) and ρα ≤ ρ on X. (24)

Going further, if ρ : X × X → [0,+∞] is an arbitrary function, consider its
symmetrization ρsym defined by

ρsym : X ×X −→ [0,+∞], ρsym(x, y) := max{ρ(x, y), ρ(y, x)}, ∀x, y ∈ X. (25)

Then ρsym is symmetric, i.e., ρsym(x, y) = ρsym(y, x) for every x, y ∈ X, and
ρsym ≥ ρ on X ×X. In fact, ρsym is the smallest [0,+∞]-valued function defined
on X × X which is symmetric and pointwise ≥ ρ. Furthermore, if ρ is as in (13)
then

ρsym ∈ Q(X), Cρsym ≤ Cρ, C̃ρsym = 1, and ρ ≤ ρsym ≤ C̃ρρ. (26)

Here is the quantitative metrization theorem from [23] alluded to above.

Theorem 2.1. Let (X, ρ) be a quasi-metric space and assume that Cρ, C̃ρ ∈ [1,+∞)
are as in (15)-(16). In this context, define (cf. (22)-(23))

ρ# := (ρsym)α for α := (log2Cρ)
−1 ∈ (0,+∞]. (27)

Then

ρ# : X ×X −→ [0,+∞) is continuous, (28)
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when X × X is equipped with the natural product topology τρ × τρ. Moreover, for
any finite number β ∈ (0, α], the function

dρ,β : X ×X → [0,+∞), dρ,β(x, y) :=
[
ρ#(x, y)

]β
, ∀x, y ∈ X, (29)

is a distance on X, i.e. for every x, y, z ∈ X, dρ,β satisfies

dρ,β(x, y) = 0 ⇐⇒ x = y (30)

dρ,β(x, y) = dρ,β(y, x) (31)

dρ,β(x, y) ≤ dρ,β(x, z) + dρ,β(z, y), (32)

and has the property that (dρ,β)1/β ≈ ρ. More specifically,

(Cρ)
−2ρ(x, y) ≤

[
dρ,β(x, y)

]1/β
= ρ#(x, y) ≤ C̃ρρ(x, y), ∀x, y ∈ X. (33)

In particular, the topology induced by the distance dρ,β on X is precisely τρ.

Remark 1. In the context of Theorem 2.1, it has also been shown in [23] that ρ#
satisfies the following Hölder-type regularity condition of order β (having the same
significance as before):∣∣ρ#(x, y)− ρ#(z, w)

∣∣ ≤ 1
β max

{
ρ#(x, y)1−β , ρ#(z, w)1−β

}
×
([
ρ#(x, z)

]β
+
[
ρ#(y, w)

]β)
(34)

whenever x, y, z, w ∈ X (with the understanding that when β ≥ 1 one also imposes
the conditions x 6= y and z 6= w). This is, of course, a stronger property than (28).

The key feature of the result discussed in Theorem 2.1 is the fact that if (X, ρ) is
any quasi-metric space then ρβ is equivalent to a distance on X for any finite number
β ∈ (0, (log2Cρ)

−1]. This result is sharp and improves upon an earlier version due
to R.A. Maćıas and C. Segovia [20], in which these authors have identified a non-
optimal upper-bound for the exponent β.

In the second part of this section we elaborate on certain classes of functions
measuring smoothness on quasi-metric spaces which are relevant for the present
work. Concretely, let (X, ρ) be a reference quasi-metric space, and assume that
(V , ‖ · ‖V ) is a quasi-normed vector space. Recall that being a quasi-norm amounts
to demanding that, for some fixed finite constant κ ≥ 2,

‖x‖V = 0⇐⇒ x = 0,
‖λx‖V = |λ|‖x‖V and

‖x+ y‖V ≤ κmax
{
‖x‖V , ‖y‖V

}
,

(35)

for any vectors x, y ∈ V and scalar λ. Given a function f : X → V and r ∈ (0,+∞),
define the oscillation of f at scale r to be

oscr(f ;X, ρ; V ) := sup{‖f(x)− f(y)‖V : x, y ∈ X, ρ(x, y) ≤ r}. (36)

Several important smoothness classes of functions on (X, ρ) are then defined in
terms of the growth of the oscillation relative to that of the scale. For example,
membership to the class Lip(X, ρ; V ), of V -valued Lipschitz functions on (X, ρ), is
characterized by the condition

sup
r>0

oscr(f ;X, ρ; V )

r
< +∞ (37)
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and, more generally, membership to the class Ċ β(X, ρ; V ), of V -valued Hölder
functions of order β ∈ (0,+∞) on (X, ρ), is characterized by the condition

sup
r>0

oscr(f ;X, ρ; V )

rβ
< +∞. (38)

Moving on, we wish to extend the scope of the above considerations by consid-
ering a more general class of functions. Specifically, let (X, ρ) be a quasi-metric
space, (V , ‖ · ‖V ) a quasi-normed vector space, and fix a function

ω : (0,+∞) −→ (0,+∞). (39)

Also, assume that E ⊆ X is a fixed set of cardinality at least two. Given a function
f : E → V , define its (ω, ρ)-seminorm by setting

‖f‖Ċω(E,ρ;V ) := sup
x,y∈E,x6=y

‖f(x)− f(y)‖V
ω(ρ(x, y))

, (40)

and introduce the vector space

Ċ ω(E, ρ; V ) :=
{
f : E → V : ‖f‖Ċω(E,ρ;V ) < +∞

}
. (41)

It is straightforward to check that the quotient space Ċ ω(E, ρ; V )/ ∼, where f ∼ g
provided f − g is constant on E, is a quasi-normed vector space when equipped
with the seminorm in (40). Moreover, this quasi-normed vector space is actually a
quasi-Banach space (i.e., it is also complete) if (V , ‖ · ‖V ) is a quasi-Banach space.
It is also clear that replacing the original quasi-norm ‖ · ‖V by another quasi-norm
‖ · ‖′V on V which is equivalent with it (in the sense that there exists C ∈ [1,+∞)
such that C−1‖ · ‖V ≤ ‖ · ‖′V ≤ C‖ · ‖V on V ) changes (40) into a quasi-norm
equivalent with it.

For further reference, let us also note here that

ω non-decreasing =⇒ ‖f‖Ċω(E,ρ;V ) = sup
r>0

oscr(f ;E, ρ; V )

ω(r)
, (42)

(interpreting (E, ρ) as a quasi-metric space in its own right), and observe that if
C 0(E; V ) denotes the space of V -valued continuous functions on E (relative to the
topology induced by τρ on E) then

lim
t→0+

ω(t) = 0 =⇒ Ċ ω(E, ρ; V ) ⊆ C 0(E; V ). (43)

Convention 1. Throughout the paper, we agree to drop the dependence on the
quasi-normed vector space V in the special case when V = R. In particular, we
abbreviate

Ċ ω(E, ρ) := Ċ ω(E, ρ;R), C 0(E) := C 0(E;R), et cetera. (44)

The proposition below deals with the issue of the membership to Ċ ω(E, ρ) of the
pointwise supremum of a family of functions from this space.

Proposition 2. Let (X, ρ) be a quasi-metric space, fix a function ω as in (39), and
suppose that E ⊆ X is a set of cardinality at least two. Given a family {fi}i∈I of
real-valued functions defined on E with the property that

M := sup
i∈I
‖fi‖Ċω(E,ρ) < +∞, (45)

consider

f∗(x) := sup
i∈I

fi(x), for every x ∈ E. (46)
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Then either f∗(x) = +∞ for every x ∈ E, or f∗ : E → R is a well-defined function
satisfying ‖f∗‖Ċω(E,ρ) ≤M .

Proof. If f∗ is not identically +∞ on E then there exists x0 ∈ E such that
supi∈I fi(x0) < +∞. On the other hand, condition (45) entails that, for each
i ∈ I,

fi(x) ≤ fi(y) +Mω(ρ(x, y)), ∀x, y ∈ E with x 6= y. (47)

Using (47) with y := x0 then gives

sup
i∈I

fi(x) ≤ sup
i∈I

fi(x0) +Mω(ρ(x, x0)) < +∞, for every x ∈ E. (48)

Thus, the function f∗ : E → R given by f∗(x) := supi∈I fi(x) for each x ∈ E is
well-defined. Moreover, (47) readily gives that f∗(x) ≤ f∗(y) +Mω(ρ(x, y)) for all
x, y ∈ E with x 6= y hence, ultimately, ‖f∗‖Ċω(E,ρ) ≤M . This finishes the proof of

the proposition.

As a corollary of Proposition 2, we note that if (X, ρ) is a quasi-metric space,
E ⊆ X is a set of cardinality at least two, and if ω is as in (39), then for any finite

family of functions fi ∈ Ċ ω(E, ρ), 1 ≤ i ≤ N , N ∈ N, it follows that

max
1≤i≤N

fi ∈ Ċ ω(E, ρ), min
1≤i≤N

fi ∈ Ċ ω(E, ρ), (49)

and

max
{∥∥ max

1≤i≤N
fi
∥∥

Ċω(E,ρ)
,
∥∥ min
1≤i≤N

fi
∥∥

Ċω(E,ρ)

}
≤ max

1≤i≤N
‖fi‖Ċω(E,ρ). (50)

In closing, we alert the reader to the fact that, given a set E, we shall use 1E to
denote the characteristic function of E, and #E to denote the cardinality of E.

3. The extension problem on general quasi-metric spaces. This section is
devoted to proving Theorem 3.3, which states (using notation introduced in §2) that

any function in Ċ ω(E, ρ) may be extended to a function in Ċ ω(X, ρ), under suitable
background assumptions on ω. The extension result presented in Theorem 3.3,
which generalizes classical work by McShane in the context of Lipschitz functions
on metric spaces, should be compared with Theorem 7.1, stated in §7. Specifically,
while the extension procedure employed in the proof of Theorem 3.3 is nonlinear,
this result is valid in quasi-metric spaces of general nature. By way of contrast, while
the extension scheme devised in the proof of Theorem 7.1 is linear, this presupposes
that the quasi-metric space in question is geometrically doubling (as described in
Definition 6.1).

Turning to specifics, we debut by making the following definition.

Definition 3.1. Given β ∈ (0,+∞), call a function ω : [0,+∞) → [0,+∞) a
β-modulation provided

ω is non-decreasing on [0,+∞), ω(t) > 0 for t > 0, and (51)

ω(r) ≤ inf
{
ω(s) + ω(t) : s, t ≥ 0, sβ + tβ = rβ

}
for all r ≥ 0. (52)

Furthermore, under the additional assumption that

ω continuously vanishes at the origin, (53)

we shall refer to the β-modulation ω as being a β-modulus of continuity.
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Occasionally we will call the property described in (52) the β-subadditivity condition
for ω. A prototypical example of a β-modulus of continuity is

ωc,β :
[
0,+∞) −→ [0,+∞), ωc,β(t) := ctβ for each t ∈ [0,+∞), (54)

where c, β ∈ (0,+∞) are given. Other useful properties of the class of mod-
ulations we are considering are collected in the lemma below. To state it, set
N0 := {0, 1, 2, ...} and, for each a ∈ R, define

〈a〉 :=

{
inf{n ∈ N0 : a ≤ n} if a ≥ 0,
0 if a < 0.

(55)

Lemma 3.2. Let β ∈ (0,+∞) and assume that the function ω : [0,+∞)→ [0,+∞)
is a β-modulation. Then the following properties hold.

(i) The function ω is a β′-modulation for any β′ ∈ (β,+∞).
(ii) For every γ ∈ (0,+∞) the function [0,+∞) 3 r 7→ ω(rγ) ∈ [0,+∞) is a

(βγ)-modulation. In particular, the function ω̃ : [0,+∞) → [0,+∞) given by
ω̃(r) := ω(r1/β) for every r ≥ 0, is subadditive.

(iii) If the given function ω continuously vanishes at the origin (i.e., if ω is a
β-modulus of continuity), then ω is continuous on [0,+∞).

(iv) The function ω satisfies the following slow-growth property:

ω(ct) ≤ 2〈β log2 c〉ω(t) for each t ∈ [0,+∞) and each c ∈ (0,+∞). (56)

Proof. To prove (i) fix r ∈ [0,+∞) and let s, t ∈ [0,+∞) be such that rβ
′

= sβ
′
+tβ

′
.

Then,

rβ =
(
rβ
′)β/β′

=
(
sβ
′
+ tβ

′)β/β′ ≤ (sβ′)β/β′ +
(
tβ
′)β/β′

= sβ + tβ , (57)

where the inequality above follows from the fact that β ≤ β′. Then (i) is an
immediate consequence of (57), the monotonicity of ω, and the observation that
the condition (52) implies

ω
(
(sβ + tβ)1/β

)
≤ ω(s) + ω(t) for all s, t ≥ 0. (58)

Next, (ii) follows directly from definitions. Turning our attention to (iii) we first
recall a basic result regarding subadditive functions (cf., e.g., [13] and [26]) according
to which if f : [0,+∞) → R is subadditive and continuously vanishing at the
origin then for each t > 0 the one-sided limits f(t±) := lims→t± f(s) exist and
f(t+) ≤ f(t) ≤ f(t−). Using (ii) and applying the above result to the subadditive
function f := ω̃ from (ii), we may conclude (since if ω continuously vanishes at the
origin then so does ω̃) that ω̃(r+) ≤ ω̃(r) ≤ ω̃(r−) for each r > 0. In turn, since ω̃
is non-decreasing, this shows that the function ω̃ is continuous on [0,+∞). Hence,
ω itself is continuous on [0,+∞), completing the proof of (iii).

We are left with proving (iv). Since when 0 < c ≤ 1 the estimate (56) is a direct
consequence of (51) and (55), there remains to consider the situation when c > 1.
Assume that this is the case and note that, when specialized to the case when s = t,
(58) yields

ω
(
21/βt

)
≤ 2ω(t) for all t ≥ 0. (59)

Furthermore, iterating the inequality in (59) yields

ω
(
2n/βt

)
≤ 2nω(t) for all t ≥ 0 and all n ∈ N0. (60)
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Finally, if we set n := 〈βlog2c〉 ∈ N0 then c ≤ 2n/β which, in conjunction with (51)
and (60), gives

ω(ct) ≤ ω(2n/βt) ≤ 2nω(t) for all t ≥ 0, (61)

finishing the proof of (56).

Remark 2. The slow-growth property (56) of a β-modulation ω has the following
significant consequence. If X is a given set, E is a subset of X of cardinality at
least two, and if ρ, ρ′ ∈ Q(X) are equivalent quasi-distances on X (cf. (14)), then

Ċ ω(E, ρ) and Ċ ω(E, ρ′) coincide as sets, while ‖ · ‖Ċω(E,ρ) and ‖ · ‖Ċω(E,ρ′) are

equivalent semi-norms.

We are now ready to present the generalization of the work by E.J. McShane [22]
and M.D. Kirszbraun [17] mentioned at the beginning of this section.

Theorem 3.3. Let (X, ρ) be a quasi-metric space and suppose that E ⊆ X has
cardinality at least two. Also, fix a finite number β ∈ (0, (log2 Cρ)

−1], where Cρ is
as in (15), and consider a β-modulation ω with the property that ω(0) = 0. Then

any function belonging to Ċ ω(E, ρ) may be extended to the entire space X with
preservation of smoothness, while retaining control of the associated semi-norm.

More specifically, with C̃ρ as in (16),

for every f ∈ Ċ ω(E, ρ) there exists F ∈ Ċ ω(X, ρ) for which

f = F |E and ‖F‖Ċω(X,ρ) ≤ 2〈2βlog2Cρ〉+〈βlog2C̃ρ〉‖f‖Ċω(E,ρ).
(62)

As a corollary,

Ċ ω(E, ρ) =
{
F |E : F ∈ Ċ ω(X, ρ)

}
. (63)

Proof. To get started, we note that Theorem 2.1 ensures the existence of some
ρ# ∈ Q(X) with the property that (ρ#)β is a distance on X and such that ρ# ≈ ρ.
More specifically (cf. (27), (33), (24)),

(Cρ)
−2ρ ≤ ρ# ≤ C̃ρρ on X ×X. (64)

Given an arbitrary function f ∈ Ċ ω(E, ρ), consider the constant

K := 2〈2βlog2Cρ〉‖f‖Ċω(E,ρ) ∈ [0,+∞) (65)

and, for each z ∈ E, define the function

fz : X −→ R, fz(x) := f(z)−Kω(ρ#(x, z)) ∀x ∈ X. (66)

The choice of K in (65) ensures that

fz ≤ f pointwise on E, for each fixed z ∈ E. (67)

Indeed, for each x, z ∈ E we may write, based on (64), the monotonicity of ω, the
slow-growth property (56), and the definition of K,

|f(x)− f(z)| ≤ ‖f‖Ċω(E,ρ)ω(ρ(x, z)) ≤ ‖f‖Ċω(E,ρ)ω
(
C2
ρρ#(x, z)

)
≤ ‖f‖Ċω(E,ρ)2

〈βlog2C
2
ρ〉ω
(
ρ#(x, z)

)
= Kω

(
ρ#(x, z)

)
. (68)

With this in hand, for each x, z ∈ E we then obtain

fz(x)− f(x) = f(z)− f(x)−Kω(ρ#(x, z)) ≤ 0, (69)
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from which (67) follows. Next we claim that the function

F : X −→ R, F (x) := sup
z∈E

fz(x) ∀x ∈ X, (70)

is well-defined and satisfies the properties listed in the second line of (62). With
this goal in mind, we first note that for each x, y, z ∈ X we have

ω
(
ρ#(x, y)

)
≤ ω

(
(ρ#(x, z)β + ρ#(z, y)β)1/β

)
≤ ω

(
ρ#(x, z)

)
+ ω

(
ρ#(z, y)

)
, (71)

since (ρ#)β is a distance on X, and since ω is non-decreasing and β-subadditive. In
turn, given that ρ# is symmetric, (71) entails∣∣ω(ρ#(x, z)

)
− ω

(
ρ#(y, z)

)∣∣ ≤ ω(ρ#(x, y)
)
, ∀x, y, z ∈ X. (72)

Thus, for each z ∈ E and x, y ∈ X
|fz(x)− fz(y)| = K

∣∣ω(ρ#(x, z)
)
− ω

(
ρ#(y, z)

)∣∣
≤ Kω(ρ#(x, y)) ≤ Kω

(
C̃ρρ(x, y)

)
≤ K2〈βlog2C̃ρ〉ω(ρ(x, y)), (73)

where the first inequality in (73) follows from (72), the second is a consequence of
(51) and (64), while the third follows from (51) and (56). Hence, for each z ∈ E,

we have fz ∈ Ċ ω(X, ρ) and

sup
z∈E
‖fz‖Ċω(X,ρ) ≤ K2〈βlog2C̃ρ〉 < +∞. (74)

In turn, from this, (70), (67) and Proposition 2 we obtain that F is well-defined,

F ≤ f on E and ‖F‖Ċω(X,ρ) ≤ K2〈βlog2C̃ρ〉 = 2〈2βlog2Cρ〉+〈βlog2C̃ρ〉‖f‖Ċω(E,ρ).

Moreover, since F (z) ≥ fz(z) = f(z) for each z ∈ E (here we have used the fact
that ω vanishes at the origin), we also obtain that F ≥ f on E. Hence, ultimately,
F = f on E which completes the proof of (62). Finally, (63) is a simple consequence
of (62) and the observation that under pointwise restriction one retains control of
the (ω, β)-seminorm.

In turn, the extension result presented in Theorem 3.3 is going to play a key role
in establishing a quantitative version of the classical Urysohn’s lemma in the next
section.

4. A quantitative Urysohn lemma. The classical Urysohn’s lemma (cf., e.g.,
[24, Theorem 33.1, p. 207]) is a basic result in topology, asserting that if (X, τ) is a
locally compact, Hausdorff topological space, F0, F1 two nonempty, disjoint subsets
of X, such that F0 is compact and F1 is closed, then there exists ψ ∈ C 0(X) with
the property that 0 ≤ ψ ≤ 1 on X, ψ ≡ 0 on F0, and ψ ≡ 1 on F1. Our goal in
this section is to present a quantitative version of this result, as described in the
theorem below.

Theorem 4.1. Let (X, ρ) be a quasi-metric space and let Cρ, C̃ρ ∈ [1,+∞) be as
in (15)-(16). Fix a finite number β ∈ (0, (log2 Cρ)

−1] and consider a β-modulation
ω which satisfies ω(0) = 0. Suppose that F0, F1 ⊆ X are two nonempty sets with

the property that distρ(F0, F1) > 0. Then, there exists ψ ∈ Ċ ω(X, ρ) such that

0 ≤ ψ ≤ 1 on X, ψ ≡ 0 on F0, ψ ≡ 1 on F1, (75)

and for which

‖ψ‖Ċω(X,ρ) ≤ 2〈2βlog2Cρ〉+2〈βlog2C̃ρ〉
[
ω
(
distρ(F0, F1)

)]−1
. (76)
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Proof. Consider the function ϕ : F0 ∪ F1 → R given by

ϕ(x) :=

{
0 if x ∈ F0,
1 if x ∈ F1,

x ∈ F0 ∪ F1. (77)

Notice that if either x, y ∈ F0, or x, y ∈ F1, we have

|ϕ(x)− ϕ(y)| = 0 ≤ 2〈βlog2C̃ρ〉
[
ω(distρ(F0, F1))

]−1
ω(ρ(x, y)), (78)

given that distρ(F0, F1) > 0. Also, if the point x ∈ F1 and the point y ∈ F0 then

0 < distρ(F0, F1) ≤ ρ(y, x) ≤ C̃ρρ(x, y). Keeping in mind that ω is non-decreasing
this forces

ω(distρ(F0, F1)) ≤ ω
(
C̃ρρ(x, y)

)
≤ 2〈βlog2C̃ρ〉ω(ρ(x, y)), (79)

by (56). Consequently,

|ϕ(x)− ϕ(y)| = 1 ≤ 2〈βlog2C̃ρ〉
[
ω(distρ(F0, F1))

]−1
ω(ρ(x, y)). (80)

In fact, a similar (and simpler) reasoning shows that (80) continues to be true in
the case when x ∈ F0 and y ∈ F1, as well. All together, these imply

ϕ ∈ Ċ ω(F0 ∪ F1, ρ) and ‖ϕ‖Ċω(F0∪F1,ρ)
≤ 2〈βlog2C̃ρ〉

[
ω(distρ(F0, F1))

]−1
. (81)

With this in hand, Theorem 3.3 then ensures the existence of ϕ̃ ∈ Ċ ω(X, ρ) which
extends the function ϕ and which has the property that

‖ϕ̃‖Ċω(X,ρ) ≤ 2〈2βlog2Cρ〉+2〈βlog2C̃ρ〉
[
ω(distρ(F0, F1))

]−1
. (82)

At this stage, consider ψ : X → R given by

ψ := min
{

max{ϕ̃, 0}, 1
}
. (83)

By design, the function ψ satisfies (75). Moreover, (49)-(50) yield ψ ∈ Ċ ω(X, ρ)
as well as the estimate ‖ψ‖Ċω(X,ρ) ≤ ‖ϕ̃‖Ċω(X,ρ). This and (82) then prove (76),

completing the proof of the theorem.

5. Whitney-like partitions of unity via Ċ ω functions. An important tool in
Harmonic Analysis is the Whitney decomposition of an open, nonempty, proper
subset O of a quasi-metric space (X, ρ) into ρ-balls whose location is related to
their distance to the complement of O in X (in a sense to be made precise later).
Frequently, given such a Whitney decomposition, it is useful to have a partition
of unity subordinate to it, which is quantitative in the sense that the size of the
functions involved is controlled in terms of the size of their respective supports.
Details in the standard setting of the Euclidean space Rn may be found in, e.g.,
[29, p. 170].

More recently, such quantitative Whitney partitions of unity have been construct-
ed on general metric spaces (see [18, Lemma 2.4, p.339], [11]), and on quasi-metric
spaces, as in [21, Lemma 2.16, p. 278]. Here we wish to improve upon the latter
result both by allowing more general set-theoretic and functional-analytic frame-
works, as described in the theorem below.

Theorem 5.1. Let (X, ρ) be a quasi-metric space and let the finite constants

Cρ, C̃ρ ∈ [1,+∞) be as in (15)-(16). Also, fix a finite number β ∈ (0, (log2 Cρ)
−1]

and consider a β-modulation ω with the property that ω(0) = 0. In this setting,

assume that {Ej}j∈I , {Ẽj}j∈I and {Êj}j∈I are three families of nonempty proper
subsets of X satisfying the following properties:
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(a) for each j ∈ I one has Ej ⊆ Ẽj ⊆ Êj, rj := distρ(Ej , X \ Ẽj) > 0 and

distρ(Ẽj , X \ Êj) ≈ rj uniformly for j ∈ I; (84)

(b) one has ri ≈ rj uniformly for i, j ∈ I such that Êi ∩ Êj 6= ∅;
(c) there exists N ∈ N such that

∑
j∈I

1Êj ≤ N ;

(d) one has
⋃
j∈I Ej =

⋃
j∈I Êj.

Then there exists a finite constant C ≥ 1, depending only on Cρ, C̃ρ ∈ [1,+∞),
β, N , and the proportionality constants in (a) and (b) above, along with a family of
real-valued functions {ϕj}j∈I defined on X such that the following conditions are
valid:

(1) for each j ∈ I one has

ϕj ∈ Ċ ω(X, ρ) and ‖ϕj‖Ċω(X,ρ) ≤ Cω(rj)
−1; (85)

(2) for every j ∈ I one has

0 ≤ ϕj ≤ 1 on X, ϕj ≡ 0 on X \ Ẽj , and ϕj ≥ 1/C on Ej ; (86)

(3) one has
∑
j∈I

ϕj = 1⋃
j∈I Ej

= 1⋃
j∈I Ẽj

= 1⋃
j∈I Êj

.

Proof. Based on Theorem 4.1 and property (a), for each j ∈ I there exists a function

ψj ∈ Ċ ω(X, ρ) such that

(i) ψj ≡ 1 on Ej , (ii) ψj ≡ 0 on X \ Ẽj , (iii) 0 ≤ ψj ≤ 1 on X, (87)

and

‖ψj‖Ċω(X,ρ) ≤ 2〈2βlog2Cρ〉+2〈βlog2C̃ρ〉ω(rj)
−1. (88)

Consider next the function

Ψ :
⋃
j∈I

Ej −→ R, Ψ :=
∑
j∈I

ψj on
⋃
j∈I

Ej , (89)

and note that Ψ is well-defined and satisfies

1 ≤ Ψ ≤ N on
⋃
j∈I

Ej . (90)

Indeed, the fact that Ψ is well-defined follows from (c) and (iii) in (87), the first
inequality in (90) is due to (i) and (iii) in (87) and the second inequality above is

a consequence of (iii) in (87), the fact that Ej ⊆ Êj for each j ∈ I, and statement
(c) in the hypotheses. Going further, for each j ∈ I introduce the function

ϕj : X −→ R, ϕj :=

{
ψj/Ψ on

⋃
i∈I Ei,

0 on X \
(⋃

i∈I Ei
)
.

(91)

By the above discussion, for each j ∈ I the function ϕj is well-defined and, thanks
to (91), the first inequality in (90) and (ii)− (iii) in (87), satisfies

0 ≤ ϕj ≤ 1 on X, and ϕj ≡ 0 on X \ Ẽj . (92)

This proves the first two assertions in (2) in the conclusion of the theorem. Also,
employing (91), (i) in (87), and the second inequality in (90), we may conclude that

ϕj = ψj/Ψ = 1/Ψ ≥ 1/N on Ej . (93)
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This finishes the proof of (2) provided one chooses C ≥ N . Going further, by (c)
and the second property in (92), the sum

∑
j∈I ϕj is meaningfully defined in R. In

fact, from (91) and (89), this sum is identically equal to one on
⋃
j∈I Ej . Using

this analysis and (d) finishes the proof of conclusion (3) from the statement of the
theorem.

There remains to prove (1). To this end, as a preliminary step we will show that
for each j ∈ I, there holds

|ψj(x)− ψj(y)| ≤ 2〈2βlog2Cρ〉+2〈βlog2C̃ρ〉ω(rj)
−1ω(ρ(x, y))

×
[
1Êj (x) + 1Êj (y)

]
, ∀x, y ∈ X. (94)

In order to prove (94), fix j ∈ I and, based on the fact that ψj ∈ Ċ ω(X, ρ) and
(88), estimate for all x, y ∈ X,

|ψj(x)− ψj(y)| ≤ ‖ψj‖Ċω(X,ρ)ω(ρ(x, y))

≤ 2〈2βlog2Cρ〉+2〈βlog2C̃ρ〉ω(rj)
−1ω(ρ(x, y)). (95)

By construction, ψj ≡ 0 on X \ Ẽj so that if x, y ∈ X \ Ẽj then (94) is obviously

true. In the case when either x ∈ Ẽj or y ∈ Ẽj , using the fact that Ẽj ⊆ Êj we
may write

1Êj (x) + 1Êj (y) ≥ 1, (96)

and thus (94) follows from (96) and (95), in this case. This finishes the justification
of (94).

Having disposed of this, we now focus on proving (1), i.e., show that for each
fixed j ∈ I

|ϕj(x)− ϕj(y)| ≤ Cω(rj)
−1ω(ρ(x, y)), ∀x, y ∈ X, (97)

for some finite constant C > 0, depending only on Cρ, C̃ρ ∈ [1,+∞), β, N , and the
proportionality constants in conditions (a) and (b). Fix j ∈ I and note that (97) is
obviously true whenever x, y ∈ X \

(⋃
i∈I Ei

)
as the left-hand side in (97) vanishes

in this case (cf. (91)). Consider next the case when x, y ∈
⋃
i∈I Ei in which scenario

we compute

|ϕj(x)− ϕj(y)| =

∣∣∣∣ψj(x)

Ψ(x)
− ψj(y)

Ψ(y)

∣∣∣∣ =

∣∣∣∣ψj(x)Ψ(y)− ψj(y)Ψ(x)

Ψ(x)Ψ(y)

∣∣∣∣
≤ |ψj(x)Ψ(y)− ψj(y)Ψ(x)|
≤ |ψj(x)− ψj(y)|Ψ(y) + |Ψ(x)−Ψ(y)|ψj(y)

≤ N |ψj(x)− ψj(y)|+ |Ψ(x)−Ψ(y)|1Ẽj (y) =: I1 + I2. (98)

The first inequality above follows from the first inequality in (90), the second esti-
mate is a consequence of the triangle inequality, and the third one follows from (90)
and (ii)-(iii) in (87). Moving on, as a direct consequence of (95) we obtain

I1 ≤ 2〈2βlog2Cρ〉+2〈βlog2C̃ρ〉Nω(rj)
−1ω(ρ(x, y)), ∀x, y ∈ X. (99)

As for I2 we make the claim that there exists a finite constant C > 0, depending

only on Cρ, C̃ρ ∈ [1,+∞), β, N and the proportionality constants in conditions (a)
and (b) from the hypotheses, such that

I2 ≤ Cω(rj)
−1ω(ρ(x, y)), ∀x, y ∈

⋃
i∈I

Ei. (100)
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To justify this claim, observe that if y ∈
(⋃

i∈I Ei
)
\ Ẽj then I2 = 0, so estimate

(100) is trivially true. Consider next the case when y ∈
(⋃

i∈I Ei
)
∩ Ẽj and denote

by c > 0 the lower proportionality constant in (84). If ρ(x, y) ≥ crj/C̃ρ then, on
the one hand, (51) and the slow-growth condition for ω described in (56) imply the
existence of a finite constant C = C(ρ, β, c) > 0 such that ω(rj) ≤ Cω(ρ(x, y)),
while on the other hand I2 ≤ 2N by the second inequality in (90). Hence (100)

holds in this case as well, if C is sufficiently large. Note that ρ(x, y) < crj/C̃ρ forces
ρ(y, x) < crj . Therefore, suppose next that

x ∈
⋃
i∈I

Ei and y ∈
(⋃
i∈I

Ei
)
∩ Ẽj are such that ρ(y, x) < crj . (101)

Given that y ∈ Ẽj and since by (84) and (101) we have

distρ(Ẽj , X \ Êj) ≥ crj > ρ(y, x), (102)

which further entails x ∈ Êj . Based on this, the triangle inequality and (94), it
follows that

I2 = |Ψ(x)−Ψ(y)|1Êj (x)1Êj (y) ≤
∑
i∈I
|ψi(x)− ψi(y)|1Êj (x)1Êj (y)

≤ 2〈2βlog2Cρ〉+2〈βlog2C̃ρ〉ω(ρ(x, y))
∑
i∈I

ω(ri)
−1[1Êi(x) + 1Êi(y)

]
1Êj (x)1Êj (y)

≤ 2〈2βlog2Cρ〉+2〈βlog2C̃ρ〉ω(ρ(x, y))
{
I
′

2 + I
′′

2

}
, if x, y are as in (101), (103)

where

I
′

2 :=
∑
i∈I

ω(ri)
−11Êi(x)1Êj (x) and I

′′

2 :=
∑
i∈I

ω(ri)
−11Êi(y)1Êj (y). (104)

For each non-zero term in I
′

2 we necessarily have x ∈ Êi ∩ Êj hence Êi ∩ Êj 6= ∅,
which further forces ri ≈ rj , by condition (b) in the hypotheses. Thus, using this,
property (c) from the hypotheses, and (56),

I
′

2 ≤ Cω(rj)
−1
∑
i∈I

1Êi(x) ≤ CNω(rj)
−1, (105)

where C > 0 is a finite constant which depends only on β and the proportionality
constant in (b). Similarly, I

′′

2 ≤ CNω(rj)
−1 for some finite constant C > 0 depend-

ing only on β and the proportionality constant in (b). Granted the discussion in the
paragraph above (101), it follows from this and (103) that (100) holds as stated.

In summary, this analysis shows that the estimate in (97) holds whenever either
x, y ∈ X \

(⋃
i∈I Ei

)
, or x, y ∈

⋃
i∈I Ei. Therefore, in order to finish the proof of

(97) it remains to establish this inequality in the case when

x ∈
⋃
i∈I

Ei and y ∈ X \
(⋃
i∈I

Ei
)
, (106)

or vice-versa. Concretely, assume that (106) holds (the other case is treated simi-

larly). Then (97) is clear when x 6∈ Ẽj since in such a scenario ϕj(x) = ϕj(y) = 0
by the second property in (92) and the second condition in (106). Thus matters
have been reduced to considering the case when

x ∈
(⋃
i∈I

Ei
)
∩ Ẽj and y ∈ X \

(⋃
i∈I

Ei
)

= X \
(⋃
i∈I

Êi
)
, (107)
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where the equality above is a consequence of condition (d) in the hypotheses. In

particular x ∈ Ẽj and y ∈ X \ Êj and, hence, based on (a) we have

ρ(x, y) ≥ distρ(Ẽj , X \ Êj) ≥ crj (108)

where, as before, c > 0 is the lower proportionality constant in (84). In this situ-
ation, using the definition of ϕj in (91), the first inequality in (90), (108), and the
properties (51) and (56) of ω we may estimate

|ϕj(x)− ϕj(y)| = ϕj(x) =
ψj(x)

Ψ(x)
≤ ψj(x) ≤ 1 ≤ Cω(rj)

−1ω(ρ(x, y)), (109)

where C > 0 is a finite constant depending on β and the lower proportionality
constant in (84). This proves the last case in the analysis of (97), finishing the
proof of (1) in the conclusion of the theorem. The proof of Theorem 5.1 is now
complete.

There are several important instances when the hypotheses of Theorem 5.1 are
satisfied. Yet, perhaps the most basic setting in which families of sets {Ej}j∈I ,
{Ẽj}j∈I and {Êj}j∈I satisfying the conditions hypothesized in Theorem 5.1 arise
in a natural fashion is in relation to the Whitney decomposition of an open subset
of a geometrically doubling quasi-metric space (for more details see the comment
at the end of §6). In turn, this topic makes the object of the next section in the
paper.

6. Whitney-type decompositions in geometrically doubling quasi-metric
spaces. A version of the classical Whitney decomposition theorem in the Euclidean
setting (as presented in, e.g., [29, Theorem 1.1, p. 167]) has been worked out in [5,
Theorem 3.1, p. 71] and [6, Theorem 3.2, p. 623] in the context of bounded open
sets in spaces of homogeneous type. Recently, in [23], the scope of this work has
been further refined as to apply to arbitrary open sets in a geometrically doubling
quasi-metric space, equipped with a symmetric quasi-distance. Here we present
a slight extension of this body of work by allowing quasi-distances which are not
necessarily symmetric. Before formulating this result, in Theorem 6.2 below, we
first define the class of geometrically doubling quasi-metric spaces.

Definition 6.1. A quasi-metric space (X, ρ) is called geometrically doubling

if there exists a number N ∈ N, called the geometrically doubling constant of

(X, ρ), with the property that any ρ-ball of any given radius r > 0 in X may be
covered by at most N ρ-balls in X of radii r/2.

Note that if (X, ρ) is a geometrically doubling quasi-metric space then

∀θ ∈ (0, 1)∃N ∈ N such that any ρ-ball of radius r in X
may be covered by at most N ρ-balls in X of radii θr.

(110)

In particular, this shows that if (X, ρ) is a geometrically doubling quasi-metric space
and if ρ′ ≈ ρ then (X, ρ′) is also a geometrically doubling quasi-metric space.

The stage is set in order to discuss the main result in this section.

Theorem 6.2. Let (X, ρ) be a geometrically doubling quasi-metric space. Then
for each number λ ∈ (1,+∞) there exist constants Λ ∈ (λ,+∞) and M ∈ N, both

depending only on Cρ, C̃ρ as in (15)-(16), λ and the geometric doubling constant of
(X, ρ), and which have the following significance.
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For each proper, nonempty, open subset O of the topological space (X, τρ) there
exist a sequence of points {xj}j∈N in O along with a family of real numbers rj > 0,
j ∈ N, for which the following properties are valid:

(1) O =
⋃
j∈N

Bρ(xj , rj);

(2)
∑
j∈N

1Bρ(xj ,λrj) ≤ M on O. In fact, there exists ε ∈ (0, 1), which depends

only on Cρ, C̃ρ, λ and the geometrically doubling constant of (X, ρ), with the
property that for any x0 ∈ O

#
{
j ∈ N : Bρ

(
x0, εdistρ(x0, X \ O)

)
∩Bρ(xj , λrj) 6= ∅

}
≤M. (111)

(3) Bρ(xj , λrj) ⊆ O and Bρ(xj ,Λrj) ∩
[
X \ O

]
6= ∅ for every j ∈ N.

(4) ri ≈ rj uniformly for i, j ∈ N such that Bρ(xi, λri) ∩Bρ(xj , λrj) 6= ∅.

Proof. In the case when the quasi-distance ρ is symmetric (i.e., when C̃ρ = 1),
this result has been established in [23]. The present, slightly more general ver-
sion considered here may be proved either by proceeding along similar lines, or
by observing that the result in [23] self-improves to the current version as follows.
Given ρ as in (13), consider its symmetrization ρsym defined in (25). Also, given
λ ∈ (1,∞), consider a much larger dilation parameter λsym > 1. As noted ear-
lier, (X, ρsym) is geometrically doubling and τρ = τρsym . Hence, by virtue of the
result proved for symmetric quasi-distances from [23], we have the Whitney-like
decomposition O =

⋃
j∈N

Bρsym(xj , rj) for some {xj}j∈N ⊆ O and some real numbers

rj > 0, j ∈ N. Then, since ρ ≤ ρsym ≤ C̃ρρ, it follows that for each j ∈ N we have

Bρsym(xj , rj) ⊆ Bρ(xj , rj) and Bρ(xj , λrj) ⊆ Bρsym(xj , λsymrj) if λsym ≥ C̃ρλ. It
may then be verified without difficulty that O =

⋃
j∈N

Bρ(xj , rj) is a Whitney-like

decomposition of O (in the sense described in the statement of the theorem).

We conclude this section with a comment which sheds light on the connections
between the theorem just presented and Theorem 5.1. Specifically, suppose O is a
proper nonempty subset of a geometrically doubling quasi-metric space (X, ρ) and
let λ > 1. Then Theorem 6.2 ensures the existence of a family {Bρ(xj , rj)}j∈N
satisfying properties (1)-(4) above, for this choice of λ. If λ′ > 1 is fixed with
the property that Cρ < λ′ and λ′Cρ < λ and we take the sets Ej := Bρ(xj , rj),

Ẽj := Bρ(xj , λ
′rj) and Êj := Bρ(xj , λrj), for each j ∈ N, then conditions (a)-(d) in

Theorem 5.1 are valid for the families {Ej}j∈N, {Ẽj}j∈N, {Êj}j∈N (with the radii
rj ’s playing the role of the parameters rj ’s from the statement of Theorem 5.1).

7. Linear extension operators preserving Ċ ω on geometrically doubling
quasi-metric spaces. In this section we formulate and prove the principal result
of our paper. Concretely, under appropriate assumptions on ω, in Theorem 7.1
below we construct a linear, bounded extension operator mapping Ċ ω(E, ρ; V ) in-

to Ċ ω(X, ρ; V ) where V is a quasi-normed vector space, and E is a subset of a
geometrically doubling quasi-metric space (X, ρ). The latter condition (cf. Defini-
tion 6.1) is key in ensuring that the original design of such an extension operator,
as envisioned by Whitney in [32] in the Euclidean setting, may be adapted to the
present, considerably more general context, since it permits us to invoke our earlier
results from §§5-6.
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By way of comparison, there are several basic distinctions between the characters
of Theorem 3.3 formulated in arbitrary quasi-metric spaces, on the one hand, and
Theorem 7.1 formulated in geometrically doubling quasi-metric spaces, on the other
hand. First, as already pointed out, the extension procedure in the latter theorem is
linear, as opposed to the non-linear extension scheme used in the proof of the former
theorem. However, another significant difference (which may be traced back to the
conceptually different strategies employed in the proofs of the results in question) is
the fact that Theorem 7.1 works for functions taking values in a possibly infinite di-
mensional vector space, whereas Theorem 3.3 can only be applied (componentwise)
to functions taking values in a finite dimensional vector space.

Turning to specifics, we first make a couple of definitions. Call a nonempty subset
K of a vector space V (over the reals) a convex cone provided

λx ∈ K ∀x ∈ K ∀λ ∈ [0,+∞), and x+ y ∈ K ∀x, y ∈ K . (112)

Also, given an arbitrary nonempty subset W of a vector space V , denote by CC(W )
the smallest convex cone containing W , i.e.,

CC(W ) :=
⋂

K convexcone

W ⊆K

K . (113)

After this preamble, we are ready to state the principal result in this paper:

Theorem 7.1. Let (X, ρ) be a geometrically doubling quasi-metric space and as-
sume that E is a nonempty, closed subset of the topological space (X, τρ). Fix a finite
number β ∈ (0, (log2 Cρ)

−1], where Cρ is as in (15), and consider a β-modulation ω
which satisfies ω(0) = 0. Finally, assume that (V , ‖ · ‖V ) is a quasi-normed vector
space (over the reals).

Then there exists an operator E , mapping the vector space of V -valued functions
defined on E into the vector space of V -valued functions defined on X, such that
the following properties hold:

(1) E is linear and preserves constants (i.e., it maps constant functions on E into
constant functions on X);

(2) E is an extension operator, in the sense that (E f)
∣∣
E

= f for every function
f : E → V ;

(3) E is monotone, in the sense that (E f)(X) ⊆ CC
(
f(E)

)
for every function

f : E → V ;
(4) E maps bounded functions on E into bounded functions on X, more precisely

there exists a constant c = c(V ) ∈ (0,+∞) for which

sup
x∈X
‖(E f)(x)‖V ≤ c sup

x∈E
‖f(x)‖V , ∀f : E → V ; (114)

(5) if #E ≥ 2, then E maps functions from Ċ ω(E, ρ; V ) into functions from

Ċ ω(X, ρ; V ), more precisely

E : Ċ ω(E, ρ; V ) −→ Ċ ω(X, ρ; V ) is a well-defined,
linear and bounded extension operator ;

(115)

(6) if ω is actually a β-modulus of continuity, then E maps continuous real-valued
functions defined on E into continuous real-valued functions defined on X,
i.e., E : C 0(E; V )→ C 0(X; V ) is well-defined and linear.

Finally, if the original hypotheses are strengthened to assuming that (V , ‖ · ‖V )
is actually a quasi-Banach space and ω is actually a β-modulus of continuity, then
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for any subset E of X (not necessarily closed) with #E ≥ 2 there exists a linear
and bounded operator

F : Ċ ω(E, ρ; V ) −→ Ċ ω(X, ρ; V )

such that (Ff)|E = f, ∀f ∈ Ċ ω(E, ρ; V ).
(116)

Before presenting the proof of Theorem 7.1 we find it useful to isolate a couple
of auxiliary results. The first such auxiliary result is Aoki-Rolewicz’s theorem; cf.
[1], [16], [25], as well as the recent generalization in [23] which reads as follows:

Theorem 7.2. Let V be a vector space equipped with a quasi-norm ‖ · ‖V . Then
there exists a quasi-norm ‖ · ‖∗ on V which is equivalent to ‖ · ‖V and which is a
p-norm for some p ∈ (0, 1]. More precisely, if κ ∈ [2,+∞) is as in (35) and if
p := (log2κ)−1 ∈ (0, 1], then a quasi-norm ‖ · ‖∗ may be constructed on V such that

κ−2‖x‖V ≤ ‖x‖∗ ≤ ‖x‖V and

‖x+ y‖p∗ ≤ ‖x‖p∗ + ‖y‖p∗ for all x, y ∈ V .
(117)

The second auxiliary result needed in the proof of Theorem 7.1 is the extension
procedure described in the lemma below.

Lemma 7.3. Suppose that (X, ρ) is a quasi-metric space and recall the constants

Cρ, C̃ρ ∈ [1,+∞) from (15)-(16). Also, assume that β ∈ (0, (log2 Cρ)
−1] is a finite

number and that ω is a β-modulus of continuity. Finally, fix a set E ⊆ X of
cardinality at least two, and suppose that the quasi-normed vector space (V , ‖ · ‖V )
is complete (i.e., is a quasi-Banach space). Then, with κ ∈ [2,+∞) as in (117),

for each f ∈ Ċ ω(E, ρ; V )there exists a unique function f̃ ∈ Ċ ω(E, ρ; V )

with the property that f̃ |E = f ;

in addition, f̃ satisfies ‖f̃‖Ċω(E,ρ;V ) ≤ κ22〈2βlog2Cρ〉+〈βlog2C̃ρ〉‖f‖Ċω(E,ρ;V ),

(118)

where E denotes the closure of E in the topology τρ. Moreover,

the mapping Ċ ω(E, ρ; V ) 3 f 7→ f̃ ∈ Ċ ω(E, ρ; V ) is a linear isomorphism. (119)

Proof. Let β ∈ (0,+∞) be as in the statement of the lemma and let the function
ω be a β-modulation which vanishes continuously at the origin. In particular, by
(iii) in Lemma 3.2, ω is continuous on [0,+∞). Finally, fix an arbitrary subset E

of X with #E ≥ 2. Then, for each f ∈ Ċ ω(E, ρ; V ), define

f̃ : E −→ V , f̃(x) := lim
j→∞

f(xj) in V , if x ∈ E, and

{xj}j∈N ⊆ E is a sequence such that lim
j→∞

ρ(x, xj) = 0.
(120)

We first make the claim that f̃ is well-defined. That is, the limit in (120) exists, is
finite, and does not depend on the choice of sequence. To see this pick an arbitrary
ε > 0, fix x ∈ E, and (given the nature of τρ) select a sequence {xj}j∈N ⊆ E with
the property lim

j→∞
ρ(x, xj) = 0. Based on the fact that ω vanishes continuously at

the origin, we may then find δ > 0 such that ω(δ) < ε. For this δ, select jo ∈ N
large enough so that ρ(x, xj) < δ whenever j ∈ N satisfies j ≥ jo. Granted this and
the monotonicity of ω, we may write ω(ρ(x, xj)) ≤ ω(δ) < ε provided j ∈ N is such

that j ≥ jo. In turn, if x ∈ E is as above, this allows us to estimate (by once again
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relying on the monotonicity and the slow-growth of ω),

‖f(xj)− f(xk)‖V ≤ ‖f‖Ċω(E,ρ;V )ω(ρ(xj , xk))

≤ ‖f‖Ċω(E,ρ;V )ω(Cρ max{ρ(xj , x), ρ(x, xk)})

≤ ‖f‖Ċω(E,ρ;V )2
〈βlog2Cρ〉ω(max{ρ(xj , x), ρ(x, xk)})

= ‖f‖Ċω(E,ρ;V )2
〈βlog2Cρ〉max

{
ω(ρ(xj , x)), ω(ρ(x, xk))

}
≤ ‖f‖Ċω(E,ρ;V )2

〈βlog2Cρ〉max
{
ω
(
C̃ρρ(x, xj)

)
, ω(ρ(x, xk))

}
< ε2〈βlog2Cρ〉+〈βlog2C̃ρ〉‖f‖Ċω(E,ρ;V ), (121)

if j, k ∈ N are ≥ jo. This shows that {f(xj)}j∈N is a Cauchy sequence in V , hence
convergent in V , since this space is quasi-Banach. Having established this, the

fact that f̃ is unambiguously defined in (120) then follows by interlacing sequences.

Going further, it is immediate that f̃ is an extension of f since in the case when
x ∈ E we may take {xj}j∈N ⊆ E to be the constant sequence xj := x for all j ∈ N.

We now proceed to show that f̃ ∈ Ċ ω(E, ρ; V ). To this end, fix x, y ∈ E
and consider two sequences {xj}j∈N, {yj}j∈N of points in E with the property that
lim
j→∞

ρ(x, xj) = lim
j→∞

ρ(y, yj) = 0. Recall the quasi-norm ‖ · ‖∗ as in Theorem 7.2.

Granted that this quasi-norm is continuous, (117), the definition of f̃ , Theorem 2.1,

Lemma 3.2 and the fact that f ∈ Ċ ω(E, ρ; V ), we may estimate

‖f̃(x)− f̃(y)‖V =
∥∥ lim
j→∞

f(xj)− lim
j→∞

f(yj)
∥∥

V
≤ κ2

∥∥ lim
j→∞

(
f(xj)− f(yj)

)∥∥
∗

≤ κ2 lim sup
j→∞

‖f(xj)− f(yj)‖∗ ≤ κ2 lim sup
j→∞

‖f(xj)− f(yj)‖V

≤ κ2‖f‖Ċω(E,ρ;V ) lim sup
j→∞

ω(ρ(xj , yj))

≤ κ2‖f‖Ċω(E,ρ;V ) lim sup
j→∞

ω
(
C2
ρρ#(xj , yj)

)
≤ κ22〈2βlog2Cρ〉‖f‖Ċω(E,ρ;V ) lim sup

j→∞
ω(ρ#(xj , yj))

= κ22〈2βlog2Cρ〉‖f‖Ċω(E,ρ;V )ω(ρ#(x, y))

≤ κ22〈2βlog2Cρ〉‖f‖Ċω(E,ρ;V )ω
(
C̃ρρ(x, y)

)
≤ κ22〈2βlog2Cρ〉+〈βlog2C̃ρ〉‖f‖Ċω(E,ρ;V )ω(ρ(x, y)), (122)

where the second equality is a result of the continuity of both ω (as pointed out
earlier) and ρ# (cf. (28)), and where the monotonicity and slow-growth property

of ω have been used repeatedly. The above argument shows that f̃ ∈ Ċ ω(E, ρ; V )

with ‖f̃‖Ċω(E,ρ;V ) ≤ κ22〈2βlog2Cρ〉+〈βlog2C̃ρ〉‖f‖Ċω(E,ρ;V ), as desired.

In order to establish the uniqueness aspect of the claim in (118) assume in addi-

tion to f̃ , there exists another function g ∈ Ċ ω(E, ρ; V ) such that g|E = f . Then for
any point x ∈ E and any sequence {xj}j∈N ⊆ E with the property lim

j→∞
ρ(x, xj) = 0

we have f̃(x) = lim
j→∞

f(xj) = lim
j→∞

g(xj) = g(x). Hence, f̃ = g on E, as wanted.

Let us now prove that the map Ċ ω(E, ρ; V ) 3 f 7→ f̃ ∈ Ċ ω(E, ρ; V ) is linear.

As a consequence of the above analysis, if the functions f, g ∈ Ċ ω(E, ρ; V ) then
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f̃ + g, f̃ + g̃ ∈ Ċ ω(E, ρ; V ) satisfy f̃ + g|E = f + g = (f̃ + g̃)|E . Based on this and

the uniqueness property just established, we may then conclude that f̃ + g = f̃ + g̃.
Hence, the map in question is additive. Its homogeneity may also be established
using the same pattern of reasoning. From this, the linearity of the mapping in
question follows. Obviously, this mapping is one-to-one. Since for every function

g ∈ Ċ ω(E, ρ; V ) we have g̃|E = g, we see that this mapping is also onto hence,
ultimately, a linear isomorphism. This completes the proof of Lemma 7.3.

We are now ready to present the proof of Theorem 7.1. Compared with the proof
of Theorem 3 on pp. 174-175 in [29], corresponding to the version of our result
formulated for real-valued functions defined on subsets of the Euclidean space, our
argument relies on appropriate substitutes for the tools listed in [i]-[iii] from §1, in
more general, non-Euclidean settings.

Proof of Theorem 7.1. Assume that (X, ρ) is a geometrically doubling quasi-metric
space and fix an arbitrary, nonempty, closed subset E of (X, τρ). Also, suppose that
β ∈ (0,+∞) is as in the statement of the theorem and that ω is a β-modulation
satisfying ω(0) = 0. If E = X, we simply take E to be the identity operator, so we
assume in what follows that E 6= X. In this case, X \E is a proper open subset of
(X, τρ).

Going further, pick a constant λ > C2
ρ and consider the Whitney decomposition

X \E =
⋃
j∈NBρ(xj , rj) as given by Theorem 6.2. Let Λ ∈ (λ,+∞) and M ∈ N be

as in the conclusion of Theorem 6.2. Next, select a constant λ′ ∈
(
Cρ, λ/Cρ

)
and

define the families {Ej}j∈N, {Ẽj}j∈N, {Êj}j∈N by setting for each j ∈ N

Ej := Bρ(xj , rj), Ẽj := Bρ(xj , λ
′rj) and Êj := Bρ(xj , λrj). (123)

Then, as indicated in the discussion at the end of §5, the hypotheses of Theorem 5.1
are satisfied for this choice of families. Next, Theorem 5.1 (employed for the given
β-modulation ω) yields a partition of unity {ϕj}j∈N satisfying properties (1)-(3)
listed in the conclusion of this result. Note that, for each j ∈ N it is possible to
choose a point pj ∈ E with the property that

1
2distρ

(
pj , Bρ(xj , λ

′rj)
)
≤ distρ

(
E,Bρ(xj , λ

′rj)
)
≤ distρ

(
pj , Bρ(xj , λ

′rj)
)
. (124)

Hence, since as a consequence of {Bρ(xj , rj)}j∈N being the balls in the Whitney
decomposition of X \ E,

distρ
(
E,Bρ(xj , λ

′rj)
)
≈ rj , uniformly in j ∈ N, (125)

it follows from this and (124) that

distρ
(
pj , Bρ(xj , λ

′rj)
)
≈ rj , uniformly in j ∈ N. (126)

Given an arbitrary function f : E → V , we then proceed to define

(E f)(x) :=

{
f(x) if x ∈ E,∑
j∈N

f(pj)ϕj(x) if x ∈ X \ E, (127)

and note that, in light of (86) and (2) in the conclusion of Theorem 6.2, we have that
E f : X → V is a well-defined function. Then properties (1)-(3) in the statement
of the theorem are direct consequences of (127). As far as (4) is concerned, we
start by recalling the constants κ ∈ [2,+∞), p = (log2κ)−1 ∈ (0, 1] as well as the
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quasi-norm ‖ · ‖∗ from Theorem 7.2. Then, from (127) and (117) we see that for
every x ∈ X \ E

‖(E f)(x)‖pV ≤ κ2p‖(E f)(x)‖p∗ ≤ κ2p
∑
j∈N
‖f(pj)‖p∗ϕj(x)

≤ κ2p
∑
j∈N
‖f(pj)‖pV ϕj(x)

≤ κ2p sup
y∈E
‖f(y)‖pV

∑
j∈N

ϕj(x) = κ2p
(

sup
y∈E
‖f(y)‖V

)p
, (128)

from which (114) readily follows (with c := κ2).
Moving on, assume that #E ≥ 2, with the goal of proving that the operator

E : Ċ ω(E, ρ; V ) −→ Ċ ω(X, ρ; V ) is well-defined and bounded. (129)

Hence, we seek to show that there exists a finite constant C ≥ 0 with the property
that for any f ∈ Ċ ω(E, ρ; V ) there holds

‖(E f)(x)− (E f)(y)‖V ≤ C‖f‖Ċω(E,ρ;V )ω(ρ(x, y)), ∀x, y ∈ X. (130)

Obviously, the estimate in (130) holds if C ≥ 1 whenever x, y ∈ E. Consider next
the case when x ∈ X \ E and y ∈ E. As a preliminary matter, we claim that

j ∈ N and x ∈ Bρ(xj , λ′rj) =⇒ ρ(x, pj) ≈ rj , (131)

with proportionality constant depending only on ρ. To justify the claim in (131),
note that if x ∈ Bρ(xj , λrj) for some j ∈ N then

ρ(x, z) ≤ Cρ max{ρ(x, xj), ρ(xj , z)} < λCρrj , ∀z ∈ Bρ(xj , λrj), (132)

hence, further, for every z ∈ Bρ(xj , λrj),

ρ(x, pj) ≤ Cρ max{ρ(x, z), ρ(z, pj)} < Cρ max{λCρrj , C̃ρρ(pj , z)}. (133)

Taking the infimum over all z ∈ Bρ(xj , λrj) and keeping in mind (126) we therefore
arrive at the conclusion that

ρ(x, pj) ≤ Cρ max
{
λCρrj , C̃ρdistρ

(
pj , Bρ(xj , λrj)

)}
≤ Cρ max

{
λCρrj , C̃ρdistρ

(
pj , Bρ(xj , λ

′rj)
)}

≤ Crj , (134)

for some C = C(ρ) ∈ (0,+∞). In summary, this analysis shows that there exists
C = C(ρ) ∈ (0,+∞) for which

j ∈ N and x ∈ Bρ(xj , λrj) =⇒ ρ(x, pj) ≤ Crj , (135)

which is a slightly stronger version than what is really needed in (131) (however,
this will be useful later on). In the opposite direction, if x ∈ Bρ(xj , λ′rj) for some
j ∈ N then by appealing once more to (126) we may write

ρ(x, pj) ≥ (C̃ρ)
−1ρ(pj , x) ≥ (C̃ρ)

−1distρ
(
pj , Bρ(xj , λ

′rj)
)
≥ crj , (136)

for some c = c(ρ) ∈ (0,+∞). This concludes the proof of (131). As a consequence
of (131) and (125) we then obtain

ρ(x, pj) ≈ distρ
(
E,Bρ(xj , λ

′rj)
)
, uniformly in j ∈ N and x ∈ Bρ(xj , λ′rj). (137)
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Going further, whenever y ∈ E and x ∈ Bρ(xj , λ′rj) for some j ∈ N, (137) allows
us to estimate

ρ(y, pj) ≤ Cρ max{ρ(y, x), ρ(x, pj)}
≤ C max

{
ρ(y, x),distρ

(
E,Bρ(xj , λ

′rj)
)}
≤ Cρ(y, x). (138)

Hence, for some finite C = C(ρ) > 0, independent of x, y, j, we have

y ∈ E, j ∈ N and x ∈ Bρ(xj , λ′rj) =⇒ ρ(y, pj) ≤ Cρ(x, y). (139)

Based on (117), (139), (56), the fact that f ∈ Ċ ω(E, ρ; V ) and the properties of
the functions {ϕj}j∈N, whenever x ∈ X \ E and y ∈ E we may therefore estimate
(using the monotonicity and the slow-growth property (56) of the function ω),

‖(E f)(y)− (E f)(x)‖pV =
∥∥∥f(y)−

∑
j∈N

f(pj)ϕj(x)
∥∥∥p

V
=
∥∥∥∑
j∈N

(f(y)− f(pj))ϕj(x)
∥∥∥p

V

≤ κ2p
∥∥∥∑
j∈N

(f(y)− f(pj))ϕj(x)
∥∥∥p
∗

≤ κ2p
∑
j∈N
‖f(y)− f(pj)‖p∗ϕj(x)p

≤ κ2p
∑
j∈N
‖f(y)− f(pj)‖pV ϕj(x)p

≤ κ2p
∑

j∈N such that
x∈Bρ(xj ,λ′rj)

‖f(y)− f(pj)‖pV ϕj(x)p

≤ C‖f‖p
Ċω(E,ρ;V )

∑
j∈N such that
x∈Bρ(xj ,λ′rj)

ω(ρ(y, pj))
pϕj(x)p

≤ C‖f‖p
Ċω(E,ρ;V )

ω(ρ(x, y))p, (140)

since 0 ≤ ϕj ≤ 1 for every j ∈ N, and since by (2) in Theorem 6.2

the cardinality of {j ∈ N : x ∈ Bρ(xj , λ′rj)} is ≤M. (141)

Of course, estimate (140) suits our purposes. The situation when y ∈ X \ E and
x ∈ E is handled similarly, so there remains to treat the case when x, y ∈ X \ E,
which we now consider. We shall investigate two separate subcases, starting with:

Subcase I: Assume that the points x, y ∈ X \ E are such that

ρ(x, y) < εdistρ(x,E) where 0 < ε <
λ

Cρ(ΛC̃ρC2
ρ + λ)

. (142)

The relevance of the choice made for ε will become more apparent later. For now,
we wish to mention that such a choice forces ε ∈ (0, 1/Cρ). To get started in earnest,
we make the claim that in the above scenario, we have

distρ(x,E) ≤
( Cρ

1− εCρ

)
distρ(y,E). (143)

Indeed, for every z ∈ E we may write

distρ(x,E) ≤ ρ(x, z) ≤ Cρ
(
ρ(x, y) + ρ(y, z)

)
≤ Cρ

(
εdistρ(x,E) + ρ(y, z)

)
, (144)
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hence (1 − εCρ)distρ(x,E) ≤ Cρρ(y, z). Taking the infimum over all z ∈ E, (143)
follows. Moving on, observe that

(E f)(x)− (E f)(y) =
∑
j∈N

(f(pj)− f(z))(ϕj(x)− ϕj(y)), ∀z ∈ E. (145)

Choose now z ∈ E such that

1

2
ρ(x, z) ≤ distρ(x,E) ≤ ρ(x, z) (146)

and note that this forces ρ(x, z) ≈ distρ(x,E) ≤ ρ(x, pj). In concert with (135),
this implies

j ∈ N and x ∈ Bρ(xj , λrj) =⇒ ρ(pj , z) ≤ Cρ max{ρ(pj , x), ρ(x, z)} ≤ Crj , (147)

for some C = C(ρ) ∈ (0,+∞). Having established (147), we next write formula

(145) for z ∈ E as in (146) and make use of (117), the fact that f ∈ Ċ ω(E, ρ; V ),
along with the properties of {ϕj}j∈N, in order to estimate

‖(E f)(x)− (E f)(y)‖pV ≤ κ2p‖(E f)(x)− (E f)(y)‖p∗
≤ κ2p

∑
j∈N
‖f(pj)− f(z)‖p∗|ϕj(x)− ϕj(y)|p

≤ κ2p
∑
j∈N
‖f(pj)− f(z)‖pV |ϕj(x)− ϕj(y)|p

≤ C‖f‖p
Ċω(E,ρ;V )

ω(ρ(x, y))p
{∑
j∈N

ω(ρ(pj , z))
p

×‖ϕj‖pĊω(X,ρ)

[
1Bρ(xj ,λ′rj)(x) + 1Bρ(xj ,λ′rj)(y)

]}
≤ C‖f‖p

Ċω(E,ρ;V )
ω(ρ(x, y))p

(
Ax +Ay

)
, (148)

where we have set

Ax :=
∑

j∈N such that
x∈Bρ(xj ,λ′rj)

[
ω(ρ(pj , z))ω(rj)

−1
]p
,

Ay :=
∑

j∈N such that
y∈Bρ(xj ,λ′rj)

[
ω(ρ(pj , z))ω(rj)

−1
]p
.

(149)

Now, (141), (147), the monotonicity of ω and (56) give that Ax ≤ C, for some finite
constant C = C(ρ, β) ≥ 0. In order to derive a similar estimate for Ay, assume that

j ∈ N is such that y ∈ Bρ(xj , λ′rj). (150)

Then by (143), (150), and the fact that Bρ(xj ,Λrj) ∩ E 6= ∅ we have

distρ(x,E) ≤
( Cρ

1− εCρ

)
distρ(y,E) ≤ Λ

( C2
ρ

1− εCρ

)
rj . (151)

In turn, (151) permits us to deduce that

ρ(xj , x) ≤ Cρ max{ρ(xj , y), ρ(y, x)} ≤ Cρ max
{
λ′rj , εC̃ρdistρ(x,E)

}
≤ Cρrj max

{
λ′, εC̃ρΛ

(
C2
ρ

1−εCρ

)}
< λrj , (152)
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where the last inequality is a consequence of the fact that λ′Cρ < λ and the way ε
has been chosen in (142). Estimate (152) shows that

if j is as in (150) then x ∈ Bρ(xj , λrj). (153)

With (153) in hand, a reference to (147) then gives

if j is as in (150) then ρ(pj , z) ≤ Crj whenever z is as in (146), (154)

for some finite C = C(ρ) > 0. Having proved (154) then the estimate Ay ≤ C for
some C = C(ρ, β) < +∞ follows as in the case of Ax, already treated. Altogether,
this proves that Ax + Ay ≤ C = C(ρ, β) < +∞ which, in combination with (148),
shows that ‖(E f)(x)−(E f)(y)‖V ≤ C‖f‖Ċω(E,ρ;V )ω(ρ(x, y)), under the hypotheses

specified in Subcase I. This bound is of the right order, and this completes the
treatment of Subcase I.

Subcase II: With the parameter ε > 0 as in Subcase I, assume that x, y ∈ X \ E
are such that

ρ(x, y) ≥ εdistρ(x,E). (155)

Consider a point z ∈ E as in (146) and note that (155) forces

ρ(x, z) ≤ 2distρ(x,E) ≤ 2ε−1ρ(x, y). (156)

Hence, we also have ρ(z, y) ≤ Cρ max{ρ(z, x), ρ(x, y)} ≤ Cρ(x, y) for some constant
C = C(ρ, ε) ∈ (0,+∞). Consequently, based on this estimate, (35), the monotonic-
ity and slow-growth property of ω, we deduce that

‖(E f)(x)− (E f)(y)‖V ≤ C‖(E f)(x)− (E f)(z)‖V + C‖(E f)(z)− (E f)(y)‖V
≤ C‖f‖Ċω(E,ρ;V )ω(ρ(x, z)) + C‖f‖Ċω(E,ρ;V )ω(ρ(z, y))

≤ C‖f‖Ċω(E,ρ;V )ω(ρ(x, y)) (157)

for some constant C = C(ρ, ε, β, κ) ∈ (0,+∞), by what we have established in the
first part of the proof (i.e., using (140) twice, once for x ∈ X \ E and z ∈ E and,
a second time, for y ∈ X \ E and z ∈ E). This completes the treatment of the
situation considered in Subcase II.

In summary, the above analysis proves that there exists C = C(ρ, β, ε, κ) > 0, a

finite constant, with the property that for every f ∈ Ċ ω(E, ρ) we have

‖(E f)(x)− (E f)(y)‖V ≤ C‖f‖Ċω(E,ρ;V )ω(ρ(x, y)), ∀x, y ∈ X. (158)

This shows that the operator (115) is well-defined and bounded (recall that its
linearity has already been noted), completing the proof of item (5) in the statement
of the theorem.

Moving on to item (6), the goal becomes showing that the operator E defined in
(127) has the property that

E f : X → V is continuous whenever f : E → V is continuous, (159)

provided ω is actually a β-modulus of continuity. To this end, suppose ω is a β-
modulation which vanishes continuously at the origin (recall that this forces ω to
be continuous on [0,+∞); cf. (iii) in Lemma 3.2). Also, fix an arbitrary continuous
function f : E → V . Note that, by design, E f is continuous on the open set X \E
(since the sum in (127) is locally finite and the ϕj ’s are continuous as a result of
(43)). There remains to show that E f is continuous at any point in E. Furthermore,
since (as seen from Theorem 2.1) the topology τρ is metrizable, it suffices to use
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the sequential characterization of continuity. Fix z ∈ E and assume that {xn}n∈N
is a sequence of points in X which converges to z in the topology τρ. Introduce
N0 := {n ∈ N : xn ∈ E} and N1 := {n ∈ N : xn ∈ X \ E}. Then, on the one hand,

lim
N03n→∞

(E f)(xn) = lim
N03n→∞

f(xn) = f(z) in V , (160)

since f is continuous on E. On the other hand, for each n ∈ N1, much as in (140)
we may estimate

‖(E f)(xn)− (E f)(z)‖pV ≤ C
∑

j∈N such that
xn∈Bρ(xj ,λ′rj)

‖f(z)− f(pj)‖pV . (161)

Let us also note that the version of (139) in the notation currently employed reads

j ∈ N and xn ∈ Bρ(xj , λ′rj) =⇒ ρ(z, pj) ≤ Cρ(xn, z), (162)

for some finite C = C(ρ) > 0, independent of n ∈ N1. Fix an arbitrary ε > 0 and,
based on the continuity of f at z, pick δ > 0 with the property that

‖f(z)− f(w)‖V < ε whenever w ∈ E is such that ρ(z, w) < δ. (163)

Since lim
N13n→∞

xn = z, it follows that there exists m ∈ N such that

ρ(xn, z) < δ/C for each n ∈ N1 with the property that n ≥ m, (164)

where the constant C is as in (162). Thus,

‖(E f)(xn)− (E f)(z)‖V ≤ (CM)1/pε, for every n ∈ N1 with n ≥ m, (165)

by (161), (162), (163), and (141). Since ε > 0 was arbitrary, it follows from (160)
and (165) that E f is continuous at z. This completes the justification of (159), and
finishes the proof of item (6).

At this stage, we are left with dealing with the last claim in the statement of
the theorem, pertaining to the existence of an extension operator as in (116) when
E is an arbitrary subset of X with #E ≥ 2, in the case when ω is a β-modulus of
continuity and the space (V , ‖ · ‖V ) is quasi-Banach. In such a scenario, we invoke
Theorem 7.1 for the set closed set E in order to obtain a bounded linear extension
operator E : Ċ ω(E, ρ; V ) → Ċ ω(X, ρ; V ), then for each f ∈ Ċ ω(E, ρ; V ) define

Ff := E (f̃), where f̃ is as in (118). Granted (119) in Lemma 7.3, the desired
conclusion follows. This finishes the proof of Theorem 7.1.
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Homogènes,” Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, 1971.

[6] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull.
Amer. Math. Soc., 83 (1977), 569–645.

http://www.ams.org/mathscinet-getitem?mr=MR0014182&return=pdf
http://dx.doi.org/10.3792/pia/1195573733
http://www.ams.org/mathscinet-getitem?mr=MR1814079&return=pdf
http://dx.doi.org/10.1090/S0002-9947-01-02756-8
http://arxiv.org/pdf/1005.3727v1
http://arxiv.org/pdf/1010.3299v1
http://www.ams.org/mathscinet-getitem?mr=MR0499948 &return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0447954&return=pdf
http://dx.doi.org/10.1090/S0002-9904-1977-14325-5


88 RYAN ALVARADO, IRINA MITREA AND MARIUS MITREA

[7] R. Engelking, “General Topology,” Heldermann Verlag, Berlin, 1989.
[8] C. Fefferman and B. Klartag, An example related to Whitney extension with almost minimal

Cm norm, Rev. Mat. Iberoamericana, 25 (2009), 423–446.

[9] C. Fefferman, A sharp form of Whitney’s extension theorem, Ann. of Math., 161 (2005),
509–577.

[10] H. Federer, “Geometric Measure Theory,” Springer-Verlag, Berlin, 1969.
[11] A. Gogatishvili, P. Koskela and N. Shanmugalingam, Interpolation properties of Besov s-

paces defined on metric spaces, Mathematische Nachrichten, Special Issue: Erhard Schmidt

Memorial Issue, Part II, Vol. 283 (2010), 215–231.
[12] J. Heinonen, “Lectures on Analysis on Metric Spaces,” Springer-Verlag, New York, 2001.

[13] E. Hille and R. S. Phillips, “Functional Analysis and Semigroups,” Amer. Math. Soc. Colloq.

Publ., Vol. 31, Amer. Math. Soc., Providence, RI, 1957.
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